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Abstract 

The Network File System (NFS) Version 4 is a new distributed file system similar to previous 
versions of NFS in its straightforward design, simplified error recovery, and independence of 
transport protocols and operating systems for file access in a heterogeneous network. Unlike 
earlier versions of NFS, the new protocol integrates file locking, strong security, operation 
coalescing, and delegation capabilities to enhance client performance for narrow data sharing 
applications on high-bandwidth networks. Locking and delegation make NFS stateful, but 
simplicity of design is retained through well-defined recovery semantics in the face of client and 
server failures and network partitions.  
 
This paper describes the new features of the protocol, focusing on the security enhancements, 
integrated locking support, changes to fully support Windows file sharing semantics, support for 
high performance data sharing, and the design points that enhance performance on the Internet. 
We describe applications of NFS Version 4. Finally, we describe areas for future work.  

1. Background 

The Network File System, or NFS, was developed by Sun Microsystems to provide distributed 
transparent file access in a heterogeneous network. In the summer of 1998, Sun Microsystems 
ceded change control of NFS to the Internet Engineering Task Force [RFC2339]. IETF assumed 
the responsibility to create a new version of NFS for use on the Internet.  
 
Prior to the formation of the IETF NFS Version 4 working group, Sun Microsystems deployed 
portions of the technology leading up to NFS Version 4, notably WebNFS [RFC2054, RFC2055] 
and strong authentication with Kerberos [MIT] within a GSS-API framework [RFC2203]. In August 
1998 Sun submitted a strawman NFS Version 4 protocol specification to the newly formed 
working group. Following discussions in the working group, and contributions by many members, 



prototype implementations of the protocol began to prove out the concepts. Initial implementation 
testing of prototypes (including a Java prototype) based on the working drafts occurred in October 
1999 to verify the design. The specification was submitted to the Internet Engineering Steering 
Group for consideration as a Proposed Standard in February 2000. Further implementation work 
and interoperability testing occurred early March 2000.  

1.1. Requirements 

As part of the IETF process, Sun Microsystems submitted an initial draft of a requirements 
document for NFS Version 4 to the newly formed working group. After wide review and some 
minor revisions [RFC2624], the requirements for NFS Version 4 were specified to be:  

 Improved access and good performance on the Internet  
 Strong security, with security negotiation built into the protocol  
 Enhanced cross-platform interoperability  
 Extensibility of the protocol  

Additionally, we sought improvements in locking and performance for narrow data sharing 
applications.  

2. The NFS Version 4 Protocol 

Old Marley was as dead as a door-nail. 
Dickens, A Christmas Carol  
The NFS Version 4 protocol is stateful. NFS is a distributed file system designed to be operating 
system independent. It achieves this by being relatively simple in design and not relying too 
heavily on any particular file system model. NFS is built on top of the ONC Remote Procedure 
Protocol [RFC1831]. A Remote Procedure Call (RPC or procedure) defines a procedural model 
for distributed applications, and is the underlying architecture of all NFS implementations. The 
External Data Representation (XDR) [RFC1832] enables heterogeneous operation by defining a 
canonical data encoding over the wire. A server in the RPC architecture provides a service by 
supporting a set of remote procedures in a well-defined distributed application. A client is a user 
of those services.  
 
The first major structural change to NFS compared to prior versions is the elimination of ancillary 
protocols. In NFS Versions 2 and 3, the Mount protocol was used to obtain the initial filehandle, 
while file locking was supported via the Network Lock Manager protocol. NFS Version 4 is a 
single protocol that uses a well-defined port, which, coupled to the use of TCP, allows NFS to 
easily transit firewalls to enable support for the Internet. As in WebNFS, the use of initialized 
filehandles obviates the need for a separate Mount protocol [RFC1813]. Locking has been fully 
integrated into the protocol—which was also required to enable mandatory locking. The lease-
based locking support adds significant state (and concomitant error recovery complexity) to the 
NFS Version 4 protocol.  
 
Another structural difference between NFS Version 4 and its predecessors is the introduction of a 
COMPOUND RPC procedure that allows the client to group traditional file operations into a single 
request to send to the server. In NFS Versions 2 and 3, all actions were RPC procedures. NFS 
Version 4 is no longer a "simple" RPC-based distributed application. In NFS Version 4, work is 
accomplished via operations. An operation is a file system action that forms part of a 
COMPOUND procedure. NFS Version 4 operations correspond functionally to RPC procedures in 
former versions of NFS. The server in turn groups the operation replies into a single response. 
Error handling is simple on the server—evaluation proceeds until the first error or last operation 
whereupon the server returns a reply for all evaluated operations.  
 



We introduced the COMPOUND procedure to reduce network round trip latency for related 
operations, which can be costly over a WAN (for example, the Internet). The model NFS Version 
4 uses implies the NFS layer engages more closely in the marshalling and unmarshalling of data, 
which complicates implementation. NFS Version 3 was designed to be easy to implement given 
an NFS Version 2 implementation. NFS Version 4 did not have that requirement. The only RPC 
procedures in NFS Version 4, in the strict sense, are NULL and COMPOUND, and their callback 
analogues.  
 
Table 1. groups the operations (or in the case of NFS Version 2 and 3, RPC procedures) 
functionally for purposes of comparison. The comparison is a little unfair since the Network Lock 
Manager, Status Monitor and Mount protocol procedures needed by NFS Versions 2 and 3 are 
not shown. Significant changes occurred to data structures and semantics of existing operations, 
some of which are described below.  

Table 1. NFS operations by version - at a glance 
Version 2 Version 3 Version 4 

NULL NULL NULL 
Compound operations 

    COMPOUND 
    NVERIFY 
    VERIFY 
    Reserved Operation 2 

OPEN/CLOSE operations 
    OPEN 
    OPENATTR 
    OPEN_CONFIRM 
    OPEN_DOWNGRADE 
    CLOSE 

Delegation operations 
    DELEGPURGE 
    DELEGRETURN 
    SETCLIENTID 
    SETCLIENTID_CONFIRM 

Client callback procedures for delegation 
    CB_NULL 
    CB_COMPOUND 
    CB_GETATTR 
    CB_RECALL 

Locking operations 
    LOCK 
    LOCKT 
    LOCKU 
    RENEW 

Filehandle operations 
    PUTPUBFH 
    PUTROOTFH 
    GETFH 



    RESTOREFH 
    SAVEFH 

Security operations 
  ACCESS ACCESS 
    SECINFO 

Traditional file operations 
LOOKUP LOOKUP LOOKUP 

    LOOKUPP 
GETATTR GETATTR GETATTR 
SETATTR SETATTR SETATTR 

LINK LINK LINK 
READDIR READDIR READDIR 

  READDIRPLUS   
READLINK READLINK READLINK 
CREATE CREATE CREATE 
MKDIR MKDIR   

  MKNOD   
REMOVE REMOVE REMOVE 
RMDIR RMDIR   

RENAME RENAME RENAME 
SYMLINK SYMLINK   

READ READ READ 
WRITE WRITE WRITE 

  COMMIT COMMIT 
STATFS FSSTAT   

  FSINFO   
  PATHCONF   

Never implemented 
ROOT     

WRITECACHE     
18 ops 22 ops 42 ops 

 
 
The NFS Version 4 introduction of the stateful operations OPEN and CLOSE is another major 
structural difference. NFS Versions 2 and 3 were essentially stateless. LOOKUP was the closest 
analogue to an open operation in earlier versions of NFS. However, a LOOKUP procedure did not 
create state on the server. The introduction of the stateful OPEN and CLOSE operations is 
required to ensure atomicity of share reservations as defined for Windows file sharing [CIFS], and 
to support exclusive creates. Additionally, the OPEN operation provides the server the ability to 
delegate authority to a client, allowing aggressive caching of file data and locking state.  
 
The CREATE operation of NFS Version 4 differs from an NFS Version 3 CREATE in that it is only 
used to create special file objects such as symbolic links, directories, and special device nodes. 
To ensure correct share reservation semantics, the regular file CREATE procedure of NFS 
Versions 2 and 3 is replaced by the NFS Version 4 OPEN operation (with a create bit set). 
CREATE and REMOVE in NFS Version 4 subsumes the MKDIR and RMDIR directory 
functionality of prior versions of NFS.  
 



NFS Version 4 servers depart from the semantics of previous NFS versions in requiring LOOKUP 
requests to cross mount points on the server. In NFS Version 4, a LOOKUP is very simple. It only 
sets the current filehandle to point at the file object resolved. Attributes (including the filehandle 
itself) can be obtained with a subsequent GETATTR operation in the same COMPOUND 
procedure. Additionally, as defined in WebNFS, LOOKUP takes a multi-component pathname.  
 
Previous versions of NFS assigned special semantics to the directory entries "." and ".." NFS 
Version 4 assigns no special meaning to these names, and requires the client to explicitly use the 
LOOKUPP operation to obtain the filehandle of a parent directory.  
 
The Weak Cache Consistency information (pre- and post-operation attributes) of NFS Version 3 
has been removed. Instead, CREATE, LINK, OPEN, REMOVE, and RENAME return a data 
structure change_info (typically implemented as a modified time) that provides information on 
whether the directory underlying the object changed during the operation. The client can use this 
information to decide whether to flush cached directory information in the face of concurrent client 
modifications.  
 
Underlying the NFS Version 4 protocol is mandated strong security via an extensible 
authentication architecture built on GSS-API. The client determines the authentication type 
required for a given file's access using the SECINFO operation. Initial authentication flavors 
supported in this framework are Kerberos and LIPKEY. NFS Version 4 defines a Windows NT 
and Unix-compatible access control model.  
 
The NFS Version 3 directory scanning operation READDIRPLUS procedure was dropped, and its 
functionality of providing attributes with each directory entry (including the filehandle) is now 
supported by the READDIR operation. This "bulk LOOKUP" functionality is used to initialize 
attribute caches when first scanning directories to reduce latency introduced by a (now 
unneeded) subsequent stream of LOOKUP operations.  
 
Attributes of the file system underlying a file system object (for example, file system free space) 
exist in NFS Version 4 as attributes of the file system object itself. This replaces the NFS Version 
3 procedures FSSTAT, FSINFO and PATHCONF with an NFS Version 4 GETATTR operation of 
the desired attributes.  
 
As in NFS Version 3, file access rights are checked on the server, not the client. However, in NFS 
Version 4, file access rights are checked as part of an explicit OPEN operation instead of the NFS 
Version 3 LOOKUP and ACCESS procedure sequence. In retrospect, the introduction of the 
separate ACCESS procedure to handle access checking in conjunction with an initial LOOKUP 
(associated with a client application opening a file) hurt performance by introducing further 
unwanted network latency. The explicit ACCESS operation is retained in NFS Version 4 to 
support the UNIX access(2) programming interface which does not require the file to be opened.  
 
NFS Version 4 supports file system replication and migration, but details of server-to-server file 
system transfers are undefined.  
 
Generalized file attributes are extensible through the addition of named attributes.  
 
File names in operations that use them are UTF-8 encoded UCS strings [UTF8] to enable 
internationalization.  

3. File System Model and Sharing 

A file system is an implementation of a single file name space containing files, and provides the 
basis for administration and space allocation. Associated with each file system is a file system 
identifier, or fsid, which is a 128-bit per-server unique identifier. A file is a single named object 



consisting of data and attributes, residing in a file system. A regular file is a simple byte stream - 
not a directory, symbolic link or special (device) file. A filehandle uniquely identifies a file on a 
server (and consequently in a file system on that server).  
 
In all versions of NFS, a server contains one or more file systems that are exported to clients.  
 
However, in NFS Version 4, a server presents a single seamless view of all the exported file 
systems to a client. A client can move up and down the name space, traversing directories 
without regard to the structure of the file systems on the server. The client can notice file system 
transitions on the server by observing that the fsid changes. Removing the requirement that a 
client mount the different exported file systems of a server separately rendered the NFS Version 
2 and file system attribute procedures useless. The server now reports file system attributes such 
as the file system free space for the specific file system underlying a file system object.  
 
The client accesses the exported file systems of the server by using the PUTROOTFH operation 
to load the filehandle of the root of the file systems tree into the current file handle for subsequent 
operations.  

3.1. Exporting File Systems 

An NFS Version 4 server exports file systems similarly to prior versions of NFS. The export 
operation makes available only those file systems, or portions of file systems, desired to be 
shared with clients. Further, the export operation allows the administrator to specify the 
acceptable security flavors by which a client can access a given exported file system.  

3.2. Pseudo-file Systems 

The subject may appear an insignificant one,  
but we shall see that it possesses some interest.  
Darwin, The Formation of Vegetable Mould...  
On most operating systems, the name space describes the set of available files arranged in a 
hierarchy. When a system acts as a server to share files, it typically shares (or "exports") only a 
portion of its name space, excluding perhaps local administration and temporary directories. 
Consider a file server that exports the following directories:  
 
   /vol/vol0 
   /vol/vol1 
   /backup/archive 
 
The server provides a single view of the exported file systems to the client as shown in Figure 1.  
 
In NFS Version 4, a server's shared name space is a single hierarchy. In the example illustrated 
in Figure 1., the export list hierarchy is not connected. When a server chooses to export a 
disconnected portion of its name space, the server creates a pseudo-file system to bridge the 
unexported portions of the name space allowing a client to reach the export points from the single 
common root. A pseudo-file system is a structure containing only directories, created by the 
server having a unique fsid, that allows a client to browse the hierarchy of exported file systems.  



 
 
 
The client's view of the pseudo-file system is limited to those paths that lead to exported file 
systems. Because /vol/vol2 and /admin are not exported in this example, they do not appear to 
the client during browsing operations as shown in the client's view in Figure 1.  

4. The COMPOUND Procedure 

NFS is an RPC-based distributed application. Previous versions of the NFS protocol were defined 
only in terms of remote procedure calls. This approach has the significant limitation that each 
RPC call defines a single request-response transaction between the client and server incurring a 
minimum network latency cost for each transaction. A client may actually be required to transmit 
a series of related requests on the network to accomplish a single client operation.  
 
NFS Version 4 introduces the COMPOUND RPC procedure. The COMPOUND procedure groups 
multiple related operations into a single RPC packet. The RPC response to a COMPOUND 
procedure contains the replies to all the operations. Because of the simplicity of error handling 
(evaluation of the operations stops on first error), it may be unwise to attempt grouping unrelated 
operations into a single COMPOUND procedure.  

4.1. An Example 

The following denotations represent NFS transactions in this paper. We represent a simple client 
RPC request in NFS Versions 2 and 3 by: 
 
  LOOKUP 
 
We represent a simple server RPC response by: 
 
  LOOKUP OK 
 
We represent a COMPOUND client RPC request in NFS Version 4, which contains one or more 
operations, by: 
 
  PUTROOTFH 
    LOOKUP 
    GETFH 



 
We represent a COMPOUND server RPC response in NFS Version 4, which contains one or 
more replies to previous operations, by: 
 
  PUTROOTFH OK 
    LOOKUP OK 
    GETFH OK 
 
Note the direction of the arrows in each example.  
 
We represent side effects of operations in NFS Version 4 in the following way: 
 
  PUTROOTFH OK  CURFH 
 
to suggest storing the current state of evaluation of the COMPOUND procedure.  
 
The following example illustrates not only the use of the COMPOUND procedure, but also the 
elimination of the Mount protocol and portmapper through the use of a well-known port (2049). 
Consider the traffic generated over the network by the following simple commands on a Solaris 
(UNIX) system: 
 
      mount bayonne:/export/vol0 /mnt 
      dd if=/mnt/home/data bs=32k count=1 
                   of=/dev/null 
 
to mount a remote file system and read the first 32KB of the file.  
 
Using NFS Version 3, the following sequence results: 
 
  PORTMAP C GETPORT (MOUNT) 
  PORTMAP R GETPORT 
  MOUNT C Null 
  MOUNT R Null 
  MOUNT C Mount /export/vol0 
  MOUNT R Mount OK 
  PORTMAP C GETPORT (NFS) 
  PORTMAP R GETPORT port=2049 
  NULL 
  NULL 
  FSINFO FH=0222 
  FSINFO OK 
  GETATTR FH=0222 
  GETATTR OK 
  LOOKUP FH=0222 home 
  LOOKUP OK FH=ED4B 
  LOOKUP FH=ED4B data 
  LOOKUP OK FH=0223 
  ACCESS FH=0223(read) 
  ACCESS OK (read) 
  READ FH=0223 at 0 for 32768 
  READ OK (32768 bytes) 
 



The sequence above contains the simplified output from an actual network trace. Each of the 11 
pairs of request and response transactions represents a network round trip.  
 
The following traffic would result in an NFS Version 4 network: 
 
  PUTROOTFH 
    LOOKUP "export/vol0" 
    GETFH 
    GETATTR 
  PUTROOTFH OK  CURFH 
    LOOKUP OK  CURFH 
    GETFH OK 
    GETATTR OK 
  PUTFH 
    OPEN "home/data" 
    GETFH 
    READ at 0 for 32768 
  PUTFH OK  CURFH 
    OPEN OK  CURFH 
    GETFH OK 
    READ OK (32768 bytes) 
 
Although an implicit "mount" occurred, the SECINFO is not needed. The SECINFO operation is 
only needed when the client attempts access with the wrong security flavor and a 
NFS4ERR_WRONGSEC error is returned.  
 
In the above example, the number of round trip requests for the same application in NFS Version 
4 compared to prior versions is reduced from 11 to two request and response transactions.  
 
A client can aggressively use the COMPOUND procedure to pre-load caches on initial reference. 
Callaghan prototyped a super LOOKUP in the Java client that emitted the following sequence on 
initial access:  
 
  PUTFH 
    LOOKUP "image" 
    GETFH     GETATTR 
    ACCESS 
    READ at 0 for 32768 
 
A client may be restricted through its file system architecture in the generation of complex 
sequences.  

4.2. Properties of the COMPOUND Procedure 

The set of operations in a COMPOUND procedure is not atomic. That is, no assumptions can be 
made as to whether conflicting operations occurred to file system objects referenced in a 
COMPOUND procedure between successive operations.  
 
Error handling is simple on the server. If an operation fails in a COMPOUND procedure, 
evaluation halts and the remaining operations are not processed. Replies are returned to the 
client up to and including the error reply for the failed operation.  
 
Most operations require a filehandle and may produce a filehandle as a result. In NFS Version 4, 
however, most operations do not explicitly have a filehandle as an argument or result. Instead, 



the server maintains a single filehandle, the current filehandle, as the argument for those 
operations. To initially load the current filehandle the operations PUTFH, PUTROOTFH and 
PUTPUBFH are used. The SAVEFH operation stores an additional filehandle for use by the LINK 
and RENAME operations (which require two filehandles for the source and target directories). 
RESTOREFH retrieves the saved filehandle.  

5. Multi-component LOOKUP 

The multi-component LOOKUP allows a client to resolve a full path name in one operation. The 
client can detect mount point crossing by inspecting the fsid of the directory containing the object 
to be resolved and the fsid of the resolved object. A UNIX client that detects a mount point 
crossing can explicitly mount the separate file systems for reporting space allocation information 
to the user. A Java client doesn't care.  
A client can enter partial information for intermediate nodes, filling in details with additional 
operations to the server when referenced.  
 
Consider the following example. The command: 
 
   ls /export/home/beepy 
 
can result in the following initial sequence of operations: 
 
  PUTROOTFH 
    LOOKUP "export" "home" "beepy" 
    GETFH 
    GETATTR 
 
NFS Version 4 requires that symbolic links be resolved relative to the client's name space. If 
beepy is a symbolic link, the LOOKUP will fail with an NFS4ERR_NOTDIR error: 
 
  PUTROOTFH OK  CURFH 
    LOOKUP FAILED  
 
The client must then resolve the pathname component by component - still doable in a single 
COMPOUND procedure. An equivalent sequence - still in a single COMPOUND request is: 
 
  PUTROOTFH 
    LOOKUP "export" 
    GETFH 
    GETATTR 
    LOOKUP "home" 
    GETFH 
    GETATTR 
    LOOKUP "beepy" 
    GETFH 
    GETATTR 
 
The benefit of this sequence, besides loading the client attribute cache for interior directory nodes, 
is that the client receives a partial result from which to proceed in final pathname resolution: 
 
  PUTROOTFH OK  CURFH 
    LOOKUP OK  CURFH 
    GETFH OK 
    GETATTR OK 



    LOOKUP OK  CURFH 
    GETFH 
    GETATTR OK 
    LOOKUP FAILED 
 
This optimization would require more sophisticated error recovery on the client.  

6. Important Data Structures 

The following data structures are fundamental building blocks of NFS Version 4.  

6.1. Filehandles 

A filehandle, as in previous versions of NFS, is a per server unique identifier for a file system 
object that is opaque to the client. As in previous versions of NFS, filehandles that are equal refer 
to the same file system object. But no assumptions can be made by the client if the filehandles 
differ. In prior versions of NFS, procedures returned a filehandle explicitly in the results structure. 
In NFS Version 4, operations set an object called the current filehandle as a side effect, for use 
by subsequent operations in a single COMPOUND procedure. A client uses the GETFH 
operation to fetch the current filehandle.  
 
There are two special filehandles: the root and the public filehandles. These filehandles are 
assigned to the current filehandle with the PUTROOTFH and PUTPUBFH operations. A client 
uses PUTROOTFH to gain initial access to the filehandle of the common root of all exported file 
systems on the server, as in the following sequence: 
 
  PUTROOTFH 
    LOOKUP "export" "home" 
    GETATTR 
  PUTROOTFH OK  CURFH 
    LOOKUP OK  CURFH 
    GETATTR OK 
 
The public filehandle identifies the portion of the server name space used with WebNFS. Unlike 
the root filehandle, the public filehandle may be bound to an arbitrary file system object. It may be 
that the root and public filehandles are the same.  

6.1.1. Persistent vs. Volatile Filehandles 

In NFS Versions 2 and 3, filehandles returned by the server were persistent. The client could 
count on the filehandle always referring to same file. The server would typically generate an 
opaque persistent filehandle by including a unique inode number, the inode's generation count, 
and device number (fsid) of the disk partition that the filehandle's object was allocated on. If the 
underlying file object was deleted and replaced with a file object of the same name, the change in 
generation count maintained by the server would result in a new filehandle being generated - and 
invalidating any existing filehandles held by clients. When the server received a request from the 
client that included a filehandle, it was straightforward to resolve the underlying file object from 
the device number and inode number.  
 
This model worked well for most UNIX-based servers, but did not work for non-UNIX systems that 
relied solely on a file's pathname for identification, or for any local file system that did not have a 
persistent equivalent to a compact inode number (for example, the High Sierra file system for CD-
ROMs).  



 
NFS Version 4 introduces the concept of volatile filehandles. For volatile filehandles, a client must 
cache the mapping between path name and file handle, and regenerate the (possibly different) 
filehandle upon filehandle expiration. When a filehandle expires, the client gets an 
NFS4ERR_FHEXPIRED error on the next access and must flush any cached information that 
refers to that filehandle.  
 
The intent is that volatile filehandles expire only upon certain events, such as:  

 when an open file is closed 
 when the file system the filehandle belongs to is migrated  
 when a client renames a file in some filesystems (as is the case with Linux NFS Version 

2 and 3 servers today)  

The weakest form of volatile filehandles allows expiration at any time. This can be risky for a 
client, such as when a second client removes a file, and creates a new one with the same name. 
A client that has the original file open would regenerate the volatile file handle and then access 
the new (unexpected) data resulting in corruption. Volatile file handles this weak are best 
reserved for isolated scenarios where a user knows they alone are accessing the file system or 
the file system is read only.  

6.2. Client ID 

A client first contacts the server using the SETCLIENTID operation, in which it presents an 
opaque structure identifying itself to the server, together with a verifier. The opaque structure 
uniquely identifies a particular client. A verifier is a unique, non-repeating 64-bit object generated 
by the client that allows a server to detect client reboots. On receipt of the client's identifying data, 
the server will return a 64-bit clientid. The clientid is unique and will not conflict with those 
previously granted, even across server reboots.  
 
The clientid is used in client recovery of locking state following a server reboot. A server after a 
reboot will reject a stale clientid, forcing the client to re-establish a clientid and locking state.  
 
After a client reboot, the client will need to get a new clientid to use to identify itself to the server. 
When it does so, using the same identity information and a different verifier, the server will note 
the reboot and free all locks obtained by the previous instantiation of the client.  

6.3. State ID 

A stateid is a unique 64-bit object that defines the locking state of a specific file.  
 
When a client requests a lock, it presents a clientid and a unique-per-client lock owner 
identification to identify the lock owner. A lock owner is the thread id process id or other unique 
identifier for the application owning a particular lock on a client. On granting the lock, the server 
returns a unique 64-bit object, the stateid, to be used by the client in subsequent operations as a 
shorthand notation to the lock owner information now stored on the server. This not only prevents 
another client from accessing a file in a manner that conflicts with the locks that are held, it also 
prevents unwanted replay by a broken router of I/O requests with a previous stateid (which can 
corrupt the locking state). A side effect of the stateid is that it also provides a positive 
acknowledgement to the server that all locks held by the client are still valid, allowing an active 
client to avoid explicit lease refresh.  

7. OPEN and CLOSE 



To make vertue of necessite. 
Chaucer, The Canterbury Tales  
 
Apart from the Network Lock Manager, NFS Versions 2 and 3 were essentially stateless protocols 
(other than for necessarily persistent file objects on the server). This presented problems in 
implementing the functions of file locking and file sharing (with Windows operating system 
semantics) required for correct operation of client applications. Further, aggressive client caching 
with well-defined semantics was impossible.  
 
NFS Version 4 introduces an OPEN operation that provides an atomic operation for file lookup, 
creation and share reservation. To provide correct share reservation semantics, an NFS Version 
4 client must use the OPEN to obtain the initial filehandle for a file. Windows requires the ability to 
atomically create a regular file with a share reservation—the OPEN operation (with a create bit 
set) provides these semantics.  
 
The CLOSE operation releases the state accumulated by an OPEN.  

8. Caching and Delegation 

NFS has never implemented distributed cache coherence, nor supported concurrent write-sharing 
in the absence of locking, and NFS Version 4 does not change that. However, client-side caching 
is essential to good performance. NFS has always supported client caching - albeit with 
restrictions and a loss of strict cache coherence.  
 
NFS Version 4 differs from previous versions of NFS by allowing a server to delegate specific 
actions on a file to a client to enable more aggressive client caching of data and to allow caching 
of locking state for the first time. A server cedes control of file updates and locking state to a client 
for the duration of a lease via a delegation.  

8.1. Client-side Caching 

NFS Version 4 file, attribute, and directory caching resembles that in previous versions. Attributes 
and directory information are cached for a duration determined by the client. At the next use after 
the end of a predefined timeout, the client will query the server to see if the file system object has 
changed.  
 
When opening a regular file, the client validates cached data for that file. The client queries the 
server to determine if the file has changed. Using this information, the client determines if the 
data cache for the file should be kept or flushed. When the file is closed, the client writes any 
modified data to the server. This technique of close-to-open consistency has provided sufficient 
consistency for most applications and users.  
 
If an application wants strict serialized access to file data, share reservations or file locking of 
specific file data ranges should be used.  
 
Previous versions of NFS avoided the use of client-side data caching when record locking was in 
effect. Version 4 defines rules that allow data caching during locking while maintaining cache 
integrity. COMPOUND operations allow fetching the modified time for a file after obtaining a 
record lock, without additional latency, simplifying the implementation of these rules.  

8.2. Open Delegation 

In NFS Version 4, when a file is only being referenced by a single client, responsibility for 
handling all of the OPEN and CLOSE and locking operations may be delegated to the client by 



the server. This eliminates OPEN and CLOSE requests, allows locking requests to be resolved 
locally, and eliminates normal NFS client periodic cache consistency checks - reducing over-the-
wire traffic and associated latency. Since the server on granting a delegation guarantees the 
client that there can be no conflicting OPEN operations, the cached data is assumed valid. The 
server may also allow the client to retain modified data on the client without flushing at CLOSE 
time, if it can be guaranteed that sufficient space will be reserved on the server ensuring that 
subsequent WRITE operations will not fail due to lack of space.  
 
When many clients share a file, in the absence of writing, the server may delegate the handling of 
read-only OPEN operations to multiple clients. This allows OPEN and CLOSE operations to be 
avoided. Since such a delegation will only persist in the absence of writers, the client is assured 
that cached data is valid, without periodic consistency checks to the server.  
 
A lease is associated with a delegation. If the lease expires, the delegation will be revoked, just 
as with locks.  
 
Delegation allows common patterns of limited sharing and read-only sharing to be dealt with 
efficiently, avoiding extra latency associated with frequent communication with the server. When 
these patterns no longer obtain, the delegation is revoked and normal client-side caching logic is 
used.  

8.3. Client Callbacks 

Revocation of delegation requires the client to update state on the server to reflect changes made 
by the client as part of the delegation, and then return the delegation to the server. Upon return of 
the delegation, the server will centrally manage OPEN and locking operations.  
 
Revocation is accomplished by making a callback. A callback is an RPC from the server to the 
client to inform it of server actions. Because callbacks may have problems transiting firewalls, 
callbacks are not required for proper operation of the protocol. A server will test whether a client 
can respond to callbacks by making an initial CB_NULL request to the client. If a client fails to 
respond, the server will not delegate authority to that client.  

8.4. Delegations vs. Windows OpLocks 

Delegation has many similarities to Opportunistic Locks (OpLocks) used by CIFS [Borr], and was 
inspired by the benefits which that mechanism provides. The differences between them reflect the 
different histories of the two protocols and the problems they solve.  
 
Delegations differ from OpLocks in that a delegation is an optimization that is solely up to the 
server while OpLocks are requested by the client. The ability to delegate depends on a network 
configuration that the server can verify, plus specific sharing patterns.  
 
When OpLocks are lost or not available, CIFS sends all operations to the server while NFS can 
fall back to its standard modes of (periodically checked) client-side caching when delegations are 
unavailable. This makes delegation less critical a feature, but delegation - when possible - 
provides many performance benefits, particularly when applications are doing frequent file locking 
operations.  
 
Delegations can persist beyond the OPEN operation which gave rise to them, like Batch OpLocks 
in Windows, allowing subsequent OPEN operations to be cached on the client. Delegated files 
can be shared by many applications on a single client with the proper state for all transferred 
back to the server upon delegation revocation.  



9. Locking 

NFS Version 4 locking is similar to the adjunct Network Lock Manager (NLM) protocol used with 
NFS Versions 2 and 3, but it is tightly coupled to the NFS protocol to better support different 
operating system semantics and error recovery.  
 
A major failing of the NLM protocol was the detection and recovery of error conditions. The 
design assumed that the underlying transport was reliable and preserved order. With NLM, an 
unreliable network easily resulted in orphan locks on the server. In addition, if a client crashed 
and never recovered, locks could be permanently abandoned, preventing any other client from 
ever acquiring the lock.  

9.1. Leases 

The key change in NFS Version 4 locking is the introduction of leases for lock management.  
 
A lease is a time-bounded grant of control of the state of a file, through a lock or delegation, from 
the server to the client. During a lease interval a server may not grant conflicting control to 
another client. A lease confers on the client the right to assume that a lock granted by the server 
will remain valid for a fixed (server-specified) interval and is subject to renewal by the client. The 
client is responsible for contacting the server to refresh the lease to maintain the lock.  
 
The expiration of a lease is considered a failure in the communications between the client and the 
server, requiring recovery. If the lease interval expires without a refresh from the client, the server 
assumes the client has failed and may allow other clients to acquire the same lock. If the server 
fails, on reboot the server waits a duration equal to a lease interval for clients to reclaim the locks 
that they may still hold, before allowing any new lock requests.  
 
Leases or token-based state management exists in several distributed file systems [Kazar90, 
Macklem94, Srinivasan].  
 
Most operating systems demand that a lock is irrevocable once acquired by an application. Unlike 
leases used to manage cache consistency where leases are kept short to prevent unnecessary 
delays in normal operations, the lock lease intervals can be substantially longer, reducing the 
number of lease refreshes required, one of the primary drawbacks of a lease-based protocol.  
 
In addition, the lease protects against a loss of the locking state by the client. A client exists in 
two states: either all the locks held from a given server are correct or all are lost. A refresh of any 
lock by the client validates all locks held by the client to a particular server. This reduces the 
number of lease refreshes by the client from one per lock each lease interval, to one per client 
each lease interval, eliminating another drawback of a lease-based protocol.  

9.2. Mandatory Locking 

Better interoperability with non-Unix operating systems is an important goal of NFS Version 4. A 
key feature of the Windows operating systems, and available on some Unix operating systems, is 
mandatory locking - the ability to block I/O operations by other applications on a file that contains 
a record lock. The NLM protocol provided only for advisory locking which allowed cooperating 
applications to synchronize I/O operations, but did not block other applications from performing 
I/O operations to the file. To handle this additional semantic, the concept of a stateid was added 
to NFS Version 4.  

9.3. Share Reservations 



To provide better interoperability, NFS Version 4 fully supports share reservations. A share 
reservation grants a client access to open a file and the ability to deny other clients open access 
to the same file. A share reservation is similar to a file or record lock, except that its granularity is 
always on an entire file, and its lifetime equals the duration of the file open. Normal file and record 
locks do not interact with share reservations - a share reservation is distinct from a record lock in 
that it only governs the ability to open a file.  
 
For example, an application may open a file for read access and acquire a share reservation 
denying other subsequent opens that request write access. The NLM protocol supported clients 
that use this style of lock to cooperate amongst themselves, but it did not enforce it between non-
cooperating clients. More importantly, a share reservation was not tied into other operations that 
implicitly open a file, such as CREATE. This exposes a race condition where one client could 
create a file, and before the second operation to acquire a share lock denying other clients 
access is received, another client acquires a conflicting reservation. The addition of an explicit 
OPEN operation correctly supports share reservations.  
 
The OPEN operation takes as parameters the traditional desired access of read or write and, in 
addition, allows the application to deny read or write access to other applications. The server 
response contains a stateid that is used by the server to enforce share reservations. A 
corresponding CLOSE operation allows a client to free the held share reservations.  

9.4. Sequence IDs 

The most problematic part of network locking is dealing with lock requests that arrive out of order 
or are replayed. As an example, a client issues a sequence of lock, unlock, and lock requests. If a 
misbehaved router replays a previous unlock request other clients may acquire a conflicting lock 
and corrupt data. The RPC layer's transaction id will defend against many of these replay errors, 
but the server duplicate request caches are frequently not large enough to handle even modest 
windows of time [Juszczak]. Locking requests by an application in virtually all operating systems 
are strictly ordered, defining a well-known state of the file. This requires that a server in a 
distributed file system also process the locking requests in the required strict order.  
 
NFS Version 4 adds to every lock and unlock operation a monotonically increasing sequence 
number to provide at-most-once semantics. The server maintains for each lock owner the last 
sequence number and the response sent. If a second request is received with the last sequence 
number, the response is replayed under the assumption that the previous response was lost. If an 
earlier sequence number is received then an error is returned as it must be a replay of a 
previously received response. A sequence number beyond the next sequence number is also 
rejected.  

10. Attributes 

The attribute model for NFS Version 4 is different from prior versions in providing a mechanism 
for extensibility. NFS Version 4 defines three types of attributes:  

 Mandatory  
 Recommended  
 Named  

Mandatory and recommended attributes are defined in terms of a bit vector to allow efficient 
implementation of operations that return or manipulate those attributes. A mask defines those 
attributes that are to be manipulated - with unset bits representing attributes to be ignored.  

10.1. Mandatory Attributes 



Mandatory attributes represent the baseline attributes that must be supported or emulated by 
every implementation. Mandatory attributes include:  

 Object type  
 Filehandle expiration type  
 Change indicator  
 Size  
 UNIX LINK support  
 UNIX SYMLINK support  
 fsid  
 Lease duration  

10.2. Recommended Attributes 

The recommended attributes include:  

 ACL  
 Archive bit  
 Case insensitive  
 Case preserving  
 Change owner restricted  
 No file name truncation beyond maximum  
 Filehandle  
 File ID  
 Hidden  
 Maximum file size  
 Maximum number of links  
 Maximum filename size  
 Maximum read size  
 Maximum write size  
 MIME type  
 UNIX mode bits  
 Owner string  
 Group string  
 Modify time  
 Create time  
 Access time  
 Space available to user  
 File system free space  
 File system total space  
 Space used by object  

ACLs are a special recommended attribute and are described below in the section on security.  

10.3. Named Attributes 

NFS Version 4 introduces named attributes for the first time. The model for named attributes is 
simple. Associated with each file system object is a hidden directory containing all its named 
attributes. The data associated with the named attributes is an uninterpreted (by NFS) stream of 
bytes. A client would access named attributes in the following way:  

 The OPENATTR operation sets the current filehandle to the named file attribute directory 
for the file object  



 READDIR and LOOKUP operations retrieve file handles for the various named attributes 
associated with the original file system object.  

Named attributes require support on the server, and are a feature of common file systems like 
Windows NTFS.  

11. Security Model 

NFS relies on the underlying security model of RPC for its security services. A variety of 
authentication flavors have been defined for use by NFS going back to the Diffie-Hellman public 
key authentication scheme defined for use with NFS Version 2 [Taylor]. However, no model other 
than the weakly authenticated UNIX permission scheme was ever widely adopted, limiting the 
use of NFS in hostile networks (for example, universities).  
 
While NFS Version 3 introduced the ACCESS procedure in part to support flexible ACL-based 
access control, no agreement was ever reached on a common ACL format to allow 
heterogeneous access control.  
 
In the area of security, NFS Version 4 improves over NFS Versions 2 and 3 by:  

 mandating the use of strong RPC security flavors that depend on cryptography  
 negotiating the security used via a system that is both secure and in-band  
 using character strings instead of integers to represent user and group identifiers  
 supporting access control that is compatible with UNIX and Windows  
 removing the Mount protocol.  

11.1. GSS-API Framework 

NFS is based on ONCRPC [RFC1831] and leverages its security architecture, recently bolstered 
by the addition of a security flavor based on the Generic Security Services API (GSS-API), called 
RPCSEC_GSS [RFC2203]. RPCSEC_GSS is a security flavor allocated under the same flavor 
number space as the commonly used AUTH_SYS flavor; AUTH_SYS is flavor number 1, 
RPCSEC_GSS is flavor number 6. The flavors between 1 and 6 represent efforts such as [Taylor] 
to improve RPC security that became obsolete due to advancements in attacks based on brute 
force [EFF] and better cryptanalysis [LaMacchia].  
 
RPCSEC_GSS differs from AUTH_SYS and other traditional flavors in two ways:  

 First, RPCSEC_GSS does more than authentication. It is capable, albeit at considerable 
expense of CPU execution time [Eisler96], of performing integrity checksums and 
encryption of the entire body of the RPC request and response. Hence, RPCSEC_GSS is 
a security flavor, and not just an authentication flavor.  

 Second, because RPCSEC_GSS simply encapsulates the GSS-API messaging tokens—
it merely acts as a transport for mechanism-specific tokens for security flavors like 
Kerberos. Adding new security mechanisms (as long as they conform to GSS-API) does 
not require re-writing significant portions of NFS or any other ONC RPC-based 
application.  

11.2. Mandated Strong Security 

All versions of NFS are capable of using RPCSEC_GSS. The difference is that while an 
implementation can claim conformance to NFS Versions 2 and 3 without implementing support 
for RPCSEC_GSS, a conforming NFS Version 4 implementation must implement RPCSEC_GSS. 

http://www.netapp.com/tech_library/3085.html


Furthermore, conforming NFS Version 4 implementations must implement security based on 
Kerberos Version 5 (in this paper, simply Kerberos) [RFC1510] and LIPKEY [Eisler00], each of 
which are GSS-API conforming security mechanisms.  

11.2.1. Kerberos versus LIPKEY 

Kerberos divides user communities into realms. Each realm has an administrator responsible for 
maintaining a database of principals (users). Each realm has one master Key Distribution Center 
(KDC), and one or more slave KDCs that give users tickets to access services on specific hosts 
in a realm. Users in one realm can access services in another realm, but it requires the 
cooperation of the administrators in each realm to develop trust relationships and to exchange 
per-realm keys. Hierarchical organization and authentication of realms can reduce the number of 
inter-realm relationships.  
 
Kerberos has been used on other distributed file systems, such as the Andrew File System 
[Howard], the Open Software Foundation's Distributed File System [Kazar], NFS Version 2 and 3 
[RFC2623], and most recently, Microsoft's CIFS (Windows 2000) [Microsoft00]. Kerberos is an 
excellent choice for enterprises and work groups operating within an Intranet, since it provides 
centralized control, as well as single sign on to the network.  
 
But NFS Version 4 is also designed to work outside of intranets on the global Internet. Kerberos 
does not work well on the Internet. The user would need the cooperation of his local system 
administrator to negotiate a trust relationship with the administrator of the remote realm.  
 
The Low Infrastructure Public Key (LIPKEY) system provides an SSL-like model and equivalent 
security for use on the Internet. LIPKEY is a GSS-API security mechanism using a symmetric key 
cipher and server-side public key certificates.  
 
The LIPKEY user experience is similar to that of HTTP over the Secure Sockets Layer (SSL). A 
user is prompted for a user name and password. These are encrypted with a 128-but symmetric 
session key. The session key is encrypted with the server's public key and all are sent to the 
server. The client authenticates the server by comparing the latter's certificate with a list of trusted 
Certification Authorities.  

11.3. Why not SSL? 

NFS Version 4 does not use SSL [SSL]. The primary issue with SSL is that it does not work over 
connectionless protocols like UDP, whereas NFS does. The second problem is that as mentioned 
previously, RPC has its own security architecture—it is unclear how to cleanly merge SSL and 
RPC security. RPCSEC_GSS provides equivalent security, yet is compatible with flavors like 
AUTH_SYS.  

11.4. Kerberos in Windows 2000 vs. UNIX 

As noted in [Ts'o], Windows 2000's Kerberos has some incompatibilities with most other Kerberos 
implementations. Windows 2000 uses the pre-authentication field in Kerberos messages to 
encode a proprietary representation of the privileged access groups (PAGs) that a user belongs 
to. This way, when a Kerberized client talks to a Kerberized-server, the server knows immediately 
what groups the user belongs to. This is both an efficient and non-interoperable scheme, which is 
exacerbated by no published documentation on the format of the PAG list, and what the PAG 
entries mean.  
 
Most Kerberized servers outside of Windows 2000 would do something different. For example, an 
NFS server in the UNIX space would map the principal name to the UNIX user identifier, and the 



UNIX user identifier to the list of groups associated with the user. It is no less efficient to do it this 
way, because it is possible to compute the mappings upon user addition to the directory services 
domain that the NFS server lives in. This approach also has the virtue of being completely inter-
operable with non-UNIX clients.  
 
The effect of PAGs on NFS is that if a Windows 2000-based NFS Version 4 client or server uses 
PAGs, then it will not interoperate with a non-Windows 2000-based server or client. Otherwise, 
there are no issues with the Windows 2000 and non-Windows 2000 nodes on the network 
sharing the same Kerberos key space.  

11.5. Negotiating Security 

NFS Version 2 had no way to negotiate security, which meant that if an NFS server exported a 
file system with something other than AUTH_SYS, there was no way for it to tell the client. Unless 
the client mounted the file system with an explicit mount option for different security, the mount 
attempt would fail.  
 
NFS Version 3 enhanced the Mount protocol to include a list of security flavors that the client 
could use to mount the file system. The problem with this approach is that the Mount protocol 
itself was not secure. While in theory, the Mount protocol could use RPCSEC_GSS, in practice, 
Mount servers were not required to support RPCSEC_GSS.  
 
NFS Version 4 deals with negotiation of security by including a new SECINFO operation that 
allows a client to ask what security the server requires for a given file object. The SECINFO 
operation's arguments and results are secured using one of the mandatory security flavors. The 
results of a SECINFO call define the RPC security flavors that should be used, and for each 
flavor any required additional information. For example, if SECINFO specifies that AUTH_SYS 
can be used, no additional information is needed. However, if SECINFO specifies to use 
RPCSEC_GSS, because RPCSEC_GSS is merely a security mechanism switch more 
information is needed. The client and server will then negotiate the Object Identifier of the GSS-
API mechanism, what quality of protection to use, and whether to use authentication, integrity 
(checksummed arguments and results), or privacy (encrypted arguments and results—full user 
data encryption).  

11.6. String Identifiers 

NFS Versions 2 and 3 represented users and groups via 32 bit integers. The NFS protocol uses 
user and group identifiers in the results of a get attribute (GETATTR) operation and in the 
arguments of a set attribute (SETATTR) operation. Using integers to represent users and groups 
requires that every client and server that might connect to each other to agree on user and group 
assignments. Not only is this impractical across the Internet, but problematic for some large 
enterprises. Some feel that a secondary issue is that 32 bits to represent users is not large 
enough.  
 
NFS Version 4 represents users and groups in the form: 
user@domain 
or 
group@domain 
where domain represents a registered DNS domain, or a sub-domain of a registered domain. By 
leveraging the global domain name registry and delegating user and group identifier control, NFS 
Version 4 does not require IANA to develop yet another global registry to guarantee uniqueness.  
 
One issue with using string names, instead of integers, is that UNIX systems like Solaris will still 
be using integers in the underlying file systems stored on disk. This requires mapping string 
names to integers and back. Since NFS clients and servers have done something similar with 



security flavors like RPCSEC_GSS and AUTH_DH [Taylor] that use string names for principals 
and not integers, we did not see a risk from removing integer based identifiers from the protocol.  

11.6.1. UUIDs 

We did consider Universal User Identifiers (UUIDs) instead of strings. However, UUIDs still have 
the translation issue, since they are 128 bits long versus 32 bits for UNIX identifiers. Furthermore, 
in situations where a client receives a GETATTR result with an untranslatable identifier, it was felt 
that a string like ted@eisler.com would be more useful than a string of 128 bits. We anticipate 
that UNIX implementers might consider adding a stat(2) system call variant that returns the file 
system's native string representations if available.  

11.7. Access Control Lists 

An Access Control List, or ACL, is simply a list that describes which users and groups get access 
to a file with what type of access (for example, read versus write). NFS Versions 2 and 3 do not 
have support for an ACL attribute, although there are several proprietary protocols for 
manipulating ACLs over NFS based on the POSIX Draft ACL specification. Such ACL support 
never saw wide use, perhaps due to the proprietary nature of the protocols and that the POSIX 
specification was never standardized.  
 
NFS Version 4 includes ACL support based on the Windows NT model and not the POSIX model. 
The reasons are that compared to the POSIX model, the NT model is both richer, and widely 
deployed.  
 
The richness of the NT model is seen in that an Access Control Entry (ACE) within an ACL can 
be one of four types: ALLOW, DENY, AUDIT, or ALARM. ALLOW and DENY simply means the 
ACE allows or denies the specified access to the entity attempting access. AUDIT means if the 
entity in the ACE attempts the specified access, log the attempt. ALARM generates a system 
dependent alarm if the entity in the ACE attempts the specified access. The POSIX model does 
not support AUDIT and ALARM.  
 
One major difference between the NT and POSIX ACL models prevents NT from being a strict 
superset of the POSIX. In the NT model, the first ACE in the ACL that denies or allows access 
corresponding to the principal, or the principal's group making the request, determines if access 
is allowed. In the POSIX model, there are two kinds of ACEs: user entries and group entries. In 
the POSIX model, the user identifier is checked against the user entries first, and if the access is 
not unambiguously granted or denied, then the user's group identifiers are each checked against 
the group entries in the ACL. We feel that in practice this subtlety is unimportant.  
 
There do exist systems today with POSIX ACLs that are incompatible with the ACLs defined for 
NFS Version 4. An NFS Version 4 server on such a system could continue to compute a user's 
access to a file with an incompatible POSIX ACL per the POSIX draft. As long as the ACL on the 
file does not change, there is no issue. When a client changes the ACL via the SETATTR 
operation, the server can replace the incompatible POSIX ACL with an NFS Version 4 compatible 
ACL as long as it assures that:  

 the resulting ACL is not more permissive than the pre-existing POSIX ACL  
 the resulting ACL is not more permissive than what the client intended.  

11.8. Removing the Mount Protocol 

Unlike NFS Versions 2 and 3, NFS Version 4 has no Mount protocol. As a byproduct, this closes 
a security hole. Suppose there exists an exported directory called  



 
   /export/alice/safe/A. 
 
Suppose the permissions on  
 
   /export/alice/safe 
 
do not allow anyone but safe's owner, Alice, access, but the permissions on /export/alice/safe/A 
are wide open. An NFS Version 2 or 3 client would normally be allowed to get a filehandle for 
/export/alice/safe/A and mount it, thus allowing a second party wrongful access.  
 
Since NFS Version 4 has no way to distinguish mount attempts from other accesses, any client 
but Alice that attempts to get a filehandle for /export/alice/safe/A will be denied.  

12. Migration and Replication 

To improve availability, NFS Version 4 has added features to support file system migration and 
replication.  
 
A file system can migrate to a new server and the clients notified of the change by means of a 
special error code. A client is informed of the new location by means of the fs_locations file 
attribute. It may then access the file system on the new server transparently to applications 
running on the client.  
 
The fs_locations attribute may also designate alternate locations for a (read-only) file system. If a 
client finds a file system unresponsive or performing poorly, it may choose to access the same 
data from another location. If a server implementation is concerned about the persistence of 
filehandles in the face of migration, it can vend volatile filehandles. The client will re-LOOKUP 
open files using saved pathname components on switching to a new server.  

13. Minor Versioning 

This is the second major revision of NFS. In the past, NFS has been extended by overloading the 
semantics of existing procedures—without recourse to a formal protocol revision. Unfortunately, 
this sometimes hurt interoperability. One goal of the NFS Version 4 effort was to provide a 
framework for minor versioning of the protocol to facilitate rapid, simple evolution.  
 
Minor versioning is left mostly undefined in the base NFS Version 4 protocol. A Reserved 
Operation 2 exists to provide minor version negotiation in a future minor revision. The 
COMPOUND arguments also include a minor version field (currently 0). Via the reserved 
operation, a client will query the server for minor versions supported—negotiating capabilities in a 
similar fashion to today's version binding in RPC. Minor version negotiation is client driven. A 
minor version 0 server (the current protocol definition) identifies itself as only supporting version 0 
by returning NFS4ERR_NOTSUPP—operation not supported - on attempts to invoke Reserved 
Operation 2.  
 
The base specification (minor version 0) has some recommended rules for future work groups on 
managing the creation of a minor version. For example, allowing extension through the addition of 
additional attributes, but avoiding deletion of attributes existing in previous minor versions.  

14. Modifications for Use on the Internet 

In the area of suitability for the Internet, NFS Version 4 improves over NFS Versions 2 and 3 by:  



 requiring TCP as a transport  
 defining COMPOUND operation to reduce round-trip latency  
 defining a global user identifier name space  
 mandating strong security based on a public key scheme  
 enabling operation through firewalls  

14.1. TCP is Mandatory 

The NFS Version 4 specification requires that any transport used provide congestion control. The 
easiest way to do this is via TCP. By using TCP, NFS Version 4 clients and servers will be able to 
adapt to known frequent spikes in unreliability on the Internet [Martin].  

14.2. Reduced Round Trip Latency 

As illustrated in the examples of section 4.1, the COMPOUND procedure enables clients to pack 
more operations in a single request, thus significantly reducing round trip latency.  

14.3. Global User Name Space 

As described in 11.6, user and group identifiers are string names allocated relative to DNS 
domain names. Because the identifiers are completely generic, with no bias toward UNIX, NT, or 
any other operating system, the consumer need not be impacted if the service provider changes 
platforms, nor is the service provider impacted if the consumer changes platforms.  

14.4. Mandatory Security 

As described in 11.2., NFS Version 4 clients and servers must support LIPKEY, a public key 
scheme that has similar properties to SSL. Both SSL and LIPKEY share properties that make 
them suitable for the Internet, namely that customers and vendors can get together without prior 
establishment of complex trust relationships.  
 
The e-commerce market place has proven to be quite dynamic. If another security technology 
replaces the simple public key approaches of SSL and LIPKEY, the flexibility of GSS-API will 
ease the introduction of this new security mechanism.  

14.5. Firewall Friendly 

To access an NFS server, an NFS Version 2 or 3 client must contact the server's portmapper to 
find the port of the Mount server. It contacts the Mount server to get an initial file handle. Then it 
contacts the portmapper to get the port of the NFS server. Finally, the client can access the NFS 
server.  
 
This creates problems for using NFS through firewalls, because firewalls typically filter traffic 
based on well known port numbers. If the client is inside a firewalled network, and the server is 
outside the network, the firewall needs to know what ports the portmapper, Mount server, and 
NFS server are listening on. The Mount server can listen on any port, so telling the firewall what 
port to permit is not practical. While the NFS server usually listens on port 2049, sometimes it 
does not. While the portmapper always listens on the same port (111), many firewall 
administrators, out of excessive caution, block requests to port 111, from inside the firewalled 
network to servers outside the network.  
 
NFS Versions 2 and 3 are not practical to use through firewalls.  
 



NFS Version 4 solves the issue by eliminating the Mount protocol, and mandating that the server 
will listen on port 2049. This means that NFS Version 4 clients do not need to contact the 
portmapper, and do not need to access services on floating ports, making firewall configuration 
as simple as configuration for HTTP.  

15. A Common Internet File System 

One ring to rule them all, 
Tolkien  
 
NFS Version 4 lends itself to several applications on the Internet.  

15.1. An Open Download Protocol 

The Internet is rapidly becoming the primary means for distributing large files containing 
installable software, documents, and multi-media. Most downloads use the File Transfer Protocol 
(FTP), or HTTP. For slow links, large file downloads have an almost certain chance of aborting, 
with no recourse for the user but to start over again. While NFS is designed to be a file access 
protocol, because NFS allows the clients to read files from arbitrary offsets, it is a superior file 
transfer protocol. If the TCP connection breaks due to timeout or other reasons, the client can 
simply re-connect and continue (transparently to the user). With the use of LIPKEY, the client and 
server can protect the transfers from third party eavesdropping or tampering.  

15.2. Consumer Backup and Restore 

The cost of disk space on personal computers seems to be approaching US$1 (or 1.04Ç or 
Ñ107) per gigabyte. With the capability to store more data, the odds of a user losing data are 
increasing. Outside the home, data management policies are in place to ensure that valuable 
data is not lost due to a failure in the storage system. These policies include backup of data to 
tertiary storage, and the use of redundant arrays of disks or file servers. Within the home, it is 
impractical to expect the average consumer to implement formal data management. While we are 
seeing the emergence of low-end appliances for storing data redundantly, that these appliances 
are co-located with the user's primary data violates the principle of having off-site backups.  
 
Several web sites today provide file backup and restore services. By definition, these web sites 
are off site. As high bandwidth links like DSL and cable modem become available to users, it 
becomes increasingly practical to backup larger amounts of data, obviating the need for on-site 
backups at home.  
 
So far, these services are based on HTTP and FTP, which suffer from the same problems as file 
download for large file transfer. Again, NFS Version 4, secured via LIPKEY, offers a superior 
approach, providing strong authentication and privacy.  

15.3. The Internet Disk 

Combining high-bandwidth persistent connections like DSL with NFS Version 4 delegation and 
sophisticated caching allows one to envision a time when users will prefer that the master copies 
of their data always exist on the service provider - who can better deal with the complexity of 
reliable data management.  
 
For example, in the morning, before work, the user can access his data, which results in a 
transparent download of a subset of it to local storage, and manipulate it locally. Before going to 
work, the user "saves" it. When the user arrives at work, he will be able to access the same 



version of the data he was working on at home, because either his NFS Version 4 capable 
desktop at home has synchronized its dirty cache with the server, or the server will revoke the 
delegation to gain access to the latest data. The user at the office will be blocked from accessing 
his data until the server has a consistent copy.  

16. Future Work 

[Pawloswki] described several follow-on tasks for NFS Version 3. Of those tasks, NFS Version 4 
addresses strong security, while it does not provide support for concurrent write sharing (though 
we introduce delegations for improved caching performance), nor does it support disconnected 
operation. Changes to the export model and allowing mount point crossing when browsing from a 
single server root partially address consistent name space construction.  
 
Curiously missing from the analysis in 1994 is recognition of the growing importance of support 
for file sharing on the Internet - which the design NFS Version 4 strongly reflects.  
 
Given that track record of predictions, let's take a stab at presenting expected future work in the 
NFS Version 4 space.  

16.1. IETF Standardization 

At the time of this writing, the working draft of the NFS Version 4 protocol specification has been 
submitted to the Internet Engineering Steering Group for consideration as a Proposed Standard - 
the first formal step towards the goal of achieving Internet Standard acceptance [RFC2026]. 
Specifications intended to become Internet Standards evolve through a set of maturity levels 
known as the "standards track". These maturity levels - Proposed Standard, Draft Standard, and 
Standard - reflect movement through the IETF standards process. While achieving Proposed 
Standard designation does not require implementation experience, we chose to prototype the 
specification to prove out concepts.  
 
The construction of two independent, interoperable conforming implementations based on the 
specification are required to achieve Draft Standard status. Some changes may occur between 
Proposed Standard and Draft Standard status, but these are not expected. A Draft Standard is 
normally considered to represent the final specification - any changes made to the protocol 
beyond this reflect specific (otherwise insoluble) problems. Internet Standard achievement follows 
widespread experience with the Draft Standard and its implementations.  

16.2. Minor Versioning 

Details of minor version negotiation, and change coordination for minor versioning, remain for 
future versions of the working group. Reserved operation 2 provides the ability to evolve NFS 
Version 4. Some suggested rules for future efforts in minor versioning appear in the draft 
specification.  

16.3. Performance 

The reduction in network latency with the use of the COMPOUND procedure comes at the cost of 
additional complexity in operation coding and decoding on the client, and increased complexity in 
handling error returns. More experience is needed in this area to understand the costs.  
 
The attribute model and the use of a bit mask to describe attributes of interest to be fetched by 
the client generated much discussion. The trade-off of possibly reduced work on the server in 
loading only those attributes of interest is pitted against the increased decode complexity (and 



branching) in the implementation to handle a variable attribute return. The costs of the attribute 
model will be explored during further implementation.  

16.4. Migration and Replication 

A server in NFS Version 4 can inform a client when multiple copies of a file system exist, or when 
a file system has moved. The client uses this information to adapt to changing network conditions 
and file system relocation. This provides a framework for migration and replication.  
 
NFS Version 4 does not address server-to-server file system migration protocols or the issues of 
maintaining replica consistency and migration atomicity. It remains for future working groups to 
define. Until then, vendor-specific solutions may arise.  

16.5. Single System Image or Name Space 

[Kazar, Howard, Microsoft99] describe approaches to providing a shared consistent name space 
that hides server details of data location from users. An NFS Version 4 server hides some details 
of data location by presenting a per-server single image of all exported file systems to a client. 
There is interest in providing a general scheme for a global, server independent name space 
within the context of NFS Version 4.  

16.6. High Performance Locking 

NFS Version 4 maintains lock ordering and supports mandatory blocking locks, but these features 
are based on a polling model. Fast lock cycling is critical to application locking performance, and 
this may be a weakness in our model and an area for future redesign.  

16.7. SFS Benchmark 

The SPEC organization's SFS benchmark is a standard for measuring the performance of NFS 
implementations [Robinson]. An NFS Version 4 version of the benchmark remains to be done.  

17. Resources for Developers 

The primary site for NFS Version 4 information is: 
     http://www.nfsv4.org 
 
Pointers to relevant sections of the Internet Engineering Task Force site: 
     http://www.ietf.org 
 
can be found there.  
 
The CITI group at the University of Michigan is developing an open source reference 
implementation, and their work can be accessed at: 
     http://www.citi.umich.edu/projects/nfsv4/  
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