

The NFS Version 4 Protocol

Brian Pawlowski, Spencer Shepler, Carl Beame, Brent Callaghan, Michael Eisler, David Noveck,
David Robinson, Robert Thurlow | Network Appliance | TR 3085

TECHNICAL REPORT
 N

etw
ork A

ppliance, a pioneer and industry
leader in data storage technology, helps
organizations understand and m

eet
com

plex technical challenges w
ith

advanced storage solutions and global data
m

anagem
ent strategies.

Table of Contents

1. Background
2. The NFS Version 4 Protocol
3. File System Model and Sharing
4. The COMPOUND Procedure
5. Multi-component LOOKUP
6. Important Data Structures
7. OPEN and CLOSE
8. Caching and Delegation
9. Locking
10. Attributes
11. Security Model
12. Migration and Replication
13. Minor Versioning
14. Modifications for Use on the Internet
15. A Common Internet File System
16. Future Work
17. Resources for Developers
18. Acknowledgements
19. Bibliogrpahy

[TR3085]

Abstract

The Network File System (NFS) Version 4 is a new distributed file system similar to previous
versions of NFS in its straightforward design, simplified error recovery, and independence of
transport protocols and operating systems for file access in a heterogeneous network. Unlike
earlier versions of NFS, the new protocol integrates file locking, strong security, operation
coalescing, and delegation capabilities to enhance client performance for narrow data sharing
applications on high-bandwidth networks. Locking and delegation make NFS stateful, but
simplicity of design is retained through well-defined recovery semantics in the face of client and
server failures and network partitions.

This paper describes the new features of the protocol, focusing on the security enhancements,
integrated locking support, changes to fully support Windows file sharing semantics, support for
high performance data sharing, and the design points that enhance performance on the Internet.
We describe applications of NFS Version 4. Finally, we describe areas for future work.

1. Background

The Network File System, or NFS, was developed by Sun Microsystems to provide distributed
transparent file access in a heterogeneous network. In the summer of 1998, Sun Microsystems
ceded change control of NFS to the Internet Engineering Task Force [RFC2339]. IETF assumed
the responsibility to create a new version of NFS for use on the Internet.

Prior to the formation of the IETF NFS Version 4 working group, Sun Microsystems deployed
portions of the technology leading up to NFS Version 4, notably WebNFS [RFC2054, RFC2055]
and strong authentication with Kerberos [MIT] within a GSS-API framework [RFC2203]. In August
1998 Sun submitted a strawman NFS Version 4 protocol specification to the newly formed
working group. Following discussions in the working group, and contributions by many members,

prototype implementations of the protocol began to prove out the concepts. Initial implementation
testing of prototypes (including a Java prototype) based on the working drafts occurred in October
1999 to verify the design. The specification was submitted to the Internet Engineering Steering
Group for consideration as a Proposed Standard in February 2000. Further implementation work
and interoperability testing occurred early March 2000.

1.1. Requirements

As part of the IETF process, Sun Microsystems submitted an initial draft of a requirements
document for NFS Version 4 to the newly formed working group. After wide review and some
minor revisions [RFC2624], the requirements for NFS Version 4 were specified to be:

 Improved access and good performance on the Internet
 Strong security, with security negotiation built into the protocol
 Enhanced cross-platform interoperability
 Extensibility of the protocol

Additionally, we sought improvements in locking and performance for narrow data sharing
applications.

2. The NFS Version 4 Protocol

Old Marley was as dead as a door-nail.
Dickens, A Christmas Carol
The NFS Version 4 protocol is stateful. NFS is a distributed file system designed to be operating
system independent. It achieves this by being relatively simple in design and not relying too
heavily on any particular file system model. NFS is built on top of the ONC Remote Procedure
Protocol [RFC1831]. A Remote Procedure Call (RPC or procedure) defines a procedural model
for distributed applications, and is the underlying architecture of all NFS implementations. The
External Data Representation (XDR) [RFC1832] enables heterogeneous operation by defining a
canonical data encoding over the wire. A server in the RPC architecture provides a service by
supporting a set of remote procedures in a well-defined distributed application. A client is a user
of those services.

The first major structural change to NFS compared to prior versions is the elimination of ancillary
protocols. In NFS Versions 2 and 3, the Mount protocol was used to obtain the initial filehandle,
while file locking was supported via the Network Lock Manager protocol. NFS Version 4 is a
single protocol that uses a well-defined port, which, coupled to the use of TCP, allows NFS to
easily transit firewalls to enable support for the Internet. As in WebNFS, the use of initialized
filehandles obviates the need for a separate Mount protocol [RFC1813]. Locking has been fully
integrated into the protocol—which was also required to enable mandatory locking. The lease-
based locking support adds significant state (and concomitant error recovery complexity) to the
NFS Version 4 protocol.

Another structural difference between NFS Version 4 and its predecessors is the introduction of a
COMPOUND RPC procedure that allows the client to group traditional file operations into a single
request to send to the server. In NFS Versions 2 and 3, all actions were RPC procedures. NFS
Version 4 is no longer a "simple" RPC-based distributed application. In NFS Version 4, work is
accomplished via operations. An operation is a file system action that forms part of a
COMPOUND procedure. NFS Version 4 operations correspond functionally to RPC procedures in
former versions of NFS. The server in turn groups the operation replies into a single response.
Error handling is simple on the server—evaluation proceeds until the first error or last operation
whereupon the server returns a reply for all evaluated operations.

We introduced the COMPOUND procedure to reduce network round trip latency for related
operations, which can be costly over a WAN (for example, the Internet). The model NFS Version
4 uses implies the NFS layer engages more closely in the marshalling and unmarshalling of data,
which complicates implementation. NFS Version 3 was designed to be easy to implement given
an NFS Version 2 implementation. NFS Version 4 did not have that requirement. The only RPC
procedures in NFS Version 4, in the strict sense, are NULL and COMPOUND, and their callback
analogues.

Table 1. groups the operations (or in the case of NFS Version 2 and 3, RPC procedures)
functionally for purposes of comparison. The comparison is a little unfair since the Network Lock
Manager, Status Monitor and Mount protocol procedures needed by NFS Versions 2 and 3 are
not shown. Significant changes occurred to data structures and semantics of existing operations,
some of which are described below.

Table 1. NFS operations by version - at a glance
Version 2 Version 3 Version 4

NULL NULL NULL
Compound operations

 COMPOUND
 NVERIFY
 VERIFY
 Reserved Operation 2

OPEN/CLOSE operations
 OPEN
 OPENATTR
 OPEN_CONFIRM
 OPEN_DOWNGRADE
 CLOSE

Delegation operations
 DELEGPURGE
 DELEGRETURN
 SETCLIENTID
 SETCLIENTID_CONFIRM

Client callback procedures for delegation
 CB_NULL
 CB_COMPOUND
 CB_GETATTR
 CB_RECALL

Locking operations
 LOCK
 LOCKT
 LOCKU
 RENEW

Filehandle operations
 PUTPUBFH
 PUTROOTFH
 GETFH

 RESTOREFH
 SAVEFH

Security operations
 ACCESS ACCESS
 SECINFO

Traditional file operations
LOOKUP LOOKUP LOOKUP

 LOOKUPP
GETATTR GETATTR GETATTR
SETATTR SETATTR SETATTR

LINK LINK LINK
READDIR READDIR READDIR

 READDIRPLUS
READLINK READLINK READLINK
CREATE CREATE CREATE
MKDIR MKDIR

 MKNOD
REMOVE REMOVE REMOVE
RMDIR RMDIR

RENAME RENAME RENAME
SYMLINK SYMLINK

READ READ READ
WRITE WRITE WRITE

 COMMIT COMMIT
STATFS FSSTAT

 FSINFO
 PATHCONF

Never implemented
ROOT

WRITECACHE
18 ops 22 ops 42 ops

The NFS Version 4 introduction of the stateful operations OPEN and CLOSE is another major
structural difference. NFS Versions 2 and 3 were essentially stateless. LOOKUP was the closest
analogue to an open operation in earlier versions of NFS. However, a LOOKUP procedure did not
create state on the server. The introduction of the stateful OPEN and CLOSE operations is
required to ensure atomicity of share reservations as defined for Windows file sharing [CIFS], and
to support exclusive creates. Additionally, the OPEN operation provides the server the ability to
delegate authority to a client, allowing aggressive caching of file data and locking state.

The CREATE operation of NFS Version 4 differs from an NFS Version 3 CREATE in that it is only
used to create special file objects such as symbolic links, directories, and special device nodes.
To ensure correct share reservation semantics, the regular file CREATE procedure of NFS
Versions 2 and 3 is replaced by the NFS Version 4 OPEN operation (with a create bit set).
CREATE and REMOVE in NFS Version 4 subsumes the MKDIR and RMDIR directory
functionality of prior versions of NFS.

NFS Version 4 servers depart from the semantics of previous NFS versions in requiring LOOKUP
requests to cross mount points on the server. In NFS Version 4, a LOOKUP is very simple. It only
sets the current filehandle to point at the file object resolved. Attributes (including the filehandle
itself) can be obtained with a subsequent GETATTR operation in the same COMPOUND
procedure. Additionally, as defined in WebNFS, LOOKUP takes a multi-component pathname.

Previous versions of NFS assigned special semantics to the directory entries "." and ".." NFS
Version 4 assigns no special meaning to these names, and requires the client to explicitly use the
LOOKUPP operation to obtain the filehandle of a parent directory.

The Weak Cache Consistency information (pre- and post-operation attributes) of NFS Version 3
has been removed. Instead, CREATE, LINK, OPEN, REMOVE, and RENAME return a data
structure change_info (typically implemented as a modified time) that provides information on
whether the directory underlying the object changed during the operation. The client can use this
information to decide whether to flush cached directory information in the face of concurrent client
modifications.

Underlying the NFS Version 4 protocol is mandated strong security via an extensible
authentication architecture built on GSS-API. The client determines the authentication type
required for a given file's access using the SECINFO operation. Initial authentication flavors
supported in this framework are Kerberos and LIPKEY. NFS Version 4 defines a Windows NT
and Unix-compatible access control model.

The NFS Version 3 directory scanning operation READDIRPLUS procedure was dropped, and its
functionality of providing attributes with each directory entry (including the filehandle) is now
supported by the READDIR operation. This "bulk LOOKUP" functionality is used to initialize
attribute caches when first scanning directories to reduce latency introduced by a (now
unneeded) subsequent stream of LOOKUP operations.

Attributes of the file system underlying a file system object (for example, file system free space)
exist in NFS Version 4 as attributes of the file system object itself. This replaces the NFS Version
3 procedures FSSTAT, FSINFO and PATHCONF with an NFS Version 4 GETATTR operation of
the desired attributes.

As in NFS Version 3, file access rights are checked on the server, not the client. However, in NFS
Version 4, file access rights are checked as part of an explicit OPEN operation instead of the NFS
Version 3 LOOKUP and ACCESS procedure sequence. In retrospect, the introduction of the
separate ACCESS procedure to handle access checking in conjunction with an initial LOOKUP
(associated with a client application opening a file) hurt performance by introducing further
unwanted network latency. The explicit ACCESS operation is retained in NFS Version 4 to
support the UNIX access(2) programming interface which does not require the file to be opened.

NFS Version 4 supports file system replication and migration, but details of server-to-server file
system transfers are undefined.

Generalized file attributes are extensible through the addition of named attributes.

File names in operations that use them are UTF-8 encoded UCS strings [UTF8] to enable
internationalization.

3. File System Model and Sharing

A file system is an implementation of a single file name space containing files, and provides the
basis for administration and space allocation. Associated with each file system is a file system
identifier, or fsid, which is a 128-bit per-server unique identifier. A file is a single named object

consisting of data and attributes, residing in a file system. A regular file is a simple byte stream -
not a directory, symbolic link or special (device) file. A filehandle uniquely identifies a file on a
server (and consequently in a file system on that server).

In all versions of NFS, a server contains one or more file systems that are exported to clients.

However, in NFS Version 4, a server presents a single seamless view of all the exported file
systems to a client. A client can move up and down the name space, traversing directories
without regard to the structure of the file systems on the server. The client can notice file system
transitions on the server by observing that the fsid changes. Removing the requirement that a
client mount the different exported file systems of a server separately rendered the NFS Version
2 and file system attribute procedures useless. The server now reports file system attributes such
as the file system free space for the specific file system underlying a file system object.

The client accesses the exported file systems of the server by using the PUTROOTFH operation
to load the filehandle of the root of the file systems tree into the current file handle for subsequent
operations.

3.1. Exporting File Systems

An NFS Version 4 server exports file systems similarly to prior versions of NFS. The export
operation makes available only those file systems, or portions of file systems, desired to be
shared with clients. Further, the export operation allows the administrator to specify the
acceptable security flavors by which a client can access a given exported file system.

3.2. Pseudo-file Systems

The subject may appear an insignificant one,
but we shall see that it possesses some interest.
Darwin, The Formation of Vegetable Mould...
On most operating systems, the name space describes the set of available files arranged in a
hierarchy. When a system acts as a server to share files, it typically shares (or "exports") only a
portion of its name space, excluding perhaps local administration and temporary directories.
Consider a file server that exports the following directories:

 /vol/vol0
 /vol/vol1
 /backup/archive

The server provides a single view of the exported file systems to the client as shown in Figure 1.

In NFS Version 4, a server's shared name space is a single hierarchy. In the example illustrated
in Figure 1., the export list hierarchy is not connected. When a server chooses to export a
disconnected portion of its name space, the server creates a pseudo-file system to bridge the
unexported portions of the name space allowing a client to reach the export points from the single
common root. A pseudo-file system is a structure containing only directories, created by the
server having a unique fsid, that allows a client to browse the hierarchy of exported file systems.

The client's view of the pseudo-file system is limited to those paths that lead to exported file
systems. Because /vol/vol2 and /admin are not exported in this example, they do not appear to
the client during browsing operations as shown in the client's view in Figure 1.

4. The COMPOUND Procedure

NFS is an RPC-based distributed application. Previous versions of the NFS protocol were defined
only in terms of remote procedure calls. This approach has the significant limitation that each
RPC call defines a single request-response transaction between the client and server incurring a
minimum network latency cost for each transaction. A client may actually be required to transmit
a series of related requests on the network to accomplish a single client operation.

NFS Version 4 introduces the COMPOUND RPC procedure. The COMPOUND procedure groups
multiple related operations into a single RPC packet. The RPC response to a COMPOUND
procedure contains the replies to all the operations. Because of the simplicity of error handling
(evaluation of the operations stops on first error), it may be unwise to attempt grouping unrelated
operations into a single COMPOUND procedure.

4.1. An Example

The following denotations represent NFS transactions in this paper. We represent a simple client
RPC request in NFS Versions 2 and 3 by:

 LOOKUP

We represent a simple server RPC response by:

 LOOKUP OK

We represent a COMPOUND client RPC request in NFS Version 4, which contains one or more
operations, by:

 PUTROOTFH
 LOOKUP
 GETFH

We represent a COMPOUND server RPC response in NFS Version 4, which contains one or
more replies to previous operations, by:

 PUTROOTFH OK
 LOOKUP OK
 GETFH OK

Note the direction of the arrows in each example.

We represent side effects of operations in NFS Version 4 in the following way:

 PUTROOTFH OK CURFH

to suggest storing the current state of evaluation of the COMPOUND procedure.

The following example illustrates not only the use of the COMPOUND procedure, but also the
elimination of the Mount protocol and portmapper through the use of a well-known port (2049).
Consider the traffic generated over the network by the following simple commands on a Solaris
(UNIX) system:

 mount bayonne:/export/vol0 /mnt
 dd if=/mnt/home/data bs=32k count=1
 of=/dev/null

to mount a remote file system and read the first 32KB of the file.

Using NFS Version 3, the following sequence results:

 PORTMAP C GETPORT (MOUNT)
 PORTMAP R GETPORT
 MOUNT C Null
 MOUNT R Null
 MOUNT C Mount /export/vol0
 MOUNT R Mount OK
 PORTMAP C GETPORT (NFS)
 PORTMAP R GETPORT port=2049
 NULL
 NULL
 FSINFO FH=0222
 FSINFO OK
 GETATTR FH=0222
 GETATTR OK
 LOOKUP FH=0222 home
 LOOKUP OK FH=ED4B
 LOOKUP FH=ED4B data
 LOOKUP OK FH=0223
 ACCESS FH=0223(read)
 ACCESS OK (read)
 READ FH=0223 at 0 for 32768
 READ OK (32768 bytes)

The sequence above contains the simplified output from an actual network trace. Each of the 11
pairs of request and response transactions represents a network round trip.

The following traffic would result in an NFS Version 4 network:

 PUTROOTFH
 LOOKUP "export/vol0"
 GETFH
 GETATTR
 PUTROOTFH OK CURFH
 LOOKUP OK CURFH
 GETFH OK
 GETATTR OK
 PUTFH
 OPEN "home/data"
 GETFH
 READ at 0 for 32768
 PUTFH OK CURFH
 OPEN OK CURFH
 GETFH OK
 READ OK (32768 bytes)

Although an implicit "mount" occurred, the SECINFO is not needed. The SECINFO operation is
only needed when the client attempts access with the wrong security flavor and a
NFS4ERR_WRONGSEC error is returned.

In the above example, the number of round trip requests for the same application in NFS Version
4 compared to prior versions is reduced from 11 to two request and response transactions.

A client can aggressively use the COMPOUND procedure to pre-load caches on initial reference.
Callaghan prototyped a super LOOKUP in the Java client that emitted the following sequence on
initial access:

 PUTFH
 LOOKUP "image"
 GETFH GETATTR
 ACCESS
 READ at 0 for 32768

A client may be restricted through its file system architecture in the generation of complex
sequences.

4.2. Properties of the COMPOUND Procedure

The set of operations in a COMPOUND procedure is not atomic. That is, no assumptions can be
made as to whether conflicting operations occurred to file system objects referenced in a
COMPOUND procedure between successive operations.

Error handling is simple on the server. If an operation fails in a COMPOUND procedure,
evaluation halts and the remaining operations are not processed. Replies are returned to the
client up to and including the error reply for the failed operation.

Most operations require a filehandle and may produce a filehandle as a result. In NFS Version 4,
however, most operations do not explicitly have a filehandle as an argument or result. Instead,

the server maintains a single filehandle, the current filehandle, as the argument for those
operations. To initially load the current filehandle the operations PUTFH, PUTROOTFH and
PUTPUBFH are used. The SAVEFH operation stores an additional filehandle for use by the LINK
and RENAME operations (which require two filehandles for the source and target directories).
RESTOREFH retrieves the saved filehandle.

5. Multi-component LOOKUP

The multi-component LOOKUP allows a client to resolve a full path name in one operation. The
client can detect mount point crossing by inspecting the fsid of the directory containing the object
to be resolved and the fsid of the resolved object. A UNIX client that detects a mount point
crossing can explicitly mount the separate file systems for reporting space allocation information
to the user. A Java client doesn't care.
A client can enter partial information for intermediate nodes, filling in details with additional
operations to the server when referenced.

Consider the following example. The command:

 ls /export/home/beepy

can result in the following initial sequence of operations:

 PUTROOTFH
 LOOKUP "export" "home" "beepy"
 GETFH
 GETATTR

NFS Version 4 requires that symbolic links be resolved relative to the client's name space. If
beepy is a symbolic link, the LOOKUP will fail with an NFS4ERR_NOTDIR error:

 PUTROOTFH OK CURFH
 LOOKUP FAILED

The client must then resolve the pathname component by component - still doable in a single
COMPOUND procedure. An equivalent sequence - still in a single COMPOUND request is:

 PUTROOTFH
 LOOKUP "export"
 GETFH
 GETATTR
 LOOKUP "home"
 GETFH
 GETATTR
 LOOKUP "beepy"
 GETFH
 GETATTR

The benefit of this sequence, besides loading the client attribute cache for interior directory nodes,
is that the client receives a partial result from which to proceed in final pathname resolution:

 PUTROOTFH OK CURFH
 LOOKUP OK CURFH
 GETFH OK
 GETATTR OK

 LOOKUP OK CURFH
 GETFH
 GETATTR OK
 LOOKUP FAILED

This optimization would require more sophisticated error recovery on the client.

6. Important Data Structures

The following data structures are fundamental building blocks of NFS Version 4.

6.1. Filehandles

A filehandle, as in previous versions of NFS, is a per server unique identifier for a file system
object that is opaque to the client. As in previous versions of NFS, filehandles that are equal refer
to the same file system object. But no assumptions can be made by the client if the filehandles
differ. In prior versions of NFS, procedures returned a filehandle explicitly in the results structure.
In NFS Version 4, operations set an object called the current filehandle as a side effect, for use
by subsequent operations in a single COMPOUND procedure. A client uses the GETFH
operation to fetch the current filehandle.

There are two special filehandles: the root and the public filehandles. These filehandles are
assigned to the current filehandle with the PUTROOTFH and PUTPUBFH operations. A client
uses PUTROOTFH to gain initial access to the filehandle of the common root of all exported file
systems on the server, as in the following sequence:

 PUTROOTFH
 LOOKUP "export" "home"
 GETATTR
 PUTROOTFH OK CURFH
 LOOKUP OK CURFH
 GETATTR OK

The public filehandle identifies the portion of the server name space used with WebNFS. Unlike
the root filehandle, the public filehandle may be bound to an arbitrary file system object. It may be
that the root and public filehandles are the same.

6.1.1. Persistent vs. Volatile Filehandles

In NFS Versions 2 and 3, filehandles returned by the server were persistent. The client could
count on the filehandle always referring to same file. The server would typically generate an
opaque persistent filehandle by including a unique inode number, the inode's generation count,
and device number (fsid) of the disk partition that the filehandle's object was allocated on. If the
underlying file object was deleted and replaced with a file object of the same name, the change in
generation count maintained by the server would result in a new filehandle being generated - and
invalidating any existing filehandles held by clients. When the server received a request from the
client that included a filehandle, it was straightforward to resolve the underlying file object from
the device number and inode number.

This model worked well for most UNIX-based servers, but did not work for non-UNIX systems that
relied solely on a file's pathname for identification, or for any local file system that did not have a
persistent equivalent to a compact inode number (for example, the High Sierra file system for CD-
ROMs).

NFS Version 4 introduces the concept of volatile filehandles. For volatile filehandles, a client must
cache the mapping between path name and file handle, and regenerate the (possibly different)
filehandle upon filehandle expiration. When a filehandle expires, the client gets an
NFS4ERR_FHEXPIRED error on the next access and must flush any cached information that
refers to that filehandle.

The intent is that volatile filehandles expire only upon certain events, such as:

 when an open file is closed
 when the file system the filehandle belongs to is migrated
 when a client renames a file in some filesystems (as is the case with Linux NFS Version

2 and 3 servers today)

The weakest form of volatile filehandles allows expiration at any time. This can be risky for a
client, such as when a second client removes a file, and creates a new one with the same name.
A client that has the original file open would regenerate the volatile file handle and then access
the new (unexpected) data resulting in corruption. Volatile file handles this weak are best
reserved for isolated scenarios where a user knows they alone are accessing the file system or
the file system is read only.

6.2. Client ID

A client first contacts the server using the SETCLIENTID operation, in which it presents an
opaque structure identifying itself to the server, together with a verifier. The opaque structure
uniquely identifies a particular client. A verifier is a unique, non-repeating 64-bit object generated
by the client that allows a server to detect client reboots. On receipt of the client's identifying data,
the server will return a 64-bit clientid. The clientid is unique and will not conflict with those
previously granted, even across server reboots.

The clientid is used in client recovery of locking state following a server reboot. A server after a
reboot will reject a stale clientid, forcing the client to re-establish a clientid and locking state.

After a client reboot, the client will need to get a new clientid to use to identify itself to the server.
When it does so, using the same identity information and a different verifier, the server will note
the reboot and free all locks obtained by the previous instantiation of the client.

6.3. State ID

A stateid is a unique 64-bit object that defines the locking state of a specific file.

When a client requests a lock, it presents a clientid and a unique-per-client lock owner
identification to identify the lock owner. A lock owner is the thread id process id or other unique
identifier for the application owning a particular lock on a client. On granting the lock, the server
returns a unique 64-bit object, the stateid, to be used by the client in subsequent operations as a
shorthand notation to the lock owner information now stored on the server. This not only prevents
another client from accessing a file in a manner that conflicts with the locks that are held, it also
prevents unwanted replay by a broken router of I/O requests with a previous stateid (which can
corrupt the locking state). A side effect of the stateid is that it also provides a positive
acknowledgement to the server that all locks held by the client are still valid, allowing an active
client to avoid explicit lease refresh.

7. OPEN and CLOSE

To make vertue of necessite.
Chaucer, The Canterbury Tales

Apart from the Network Lock Manager, NFS Versions 2 and 3 were essentially stateless protocols
(other than for necessarily persistent file objects on the server). This presented problems in
implementing the functions of file locking and file sharing (with Windows operating system
semantics) required for correct operation of client applications. Further, aggressive client caching
with well-defined semantics was impossible.

NFS Version 4 introduces an OPEN operation that provides an atomic operation for file lookup,
creation and share reservation. To provide correct share reservation semantics, an NFS Version
4 client must use the OPEN to obtain the initial filehandle for a file. Windows requires the ability to
atomically create a regular file with a share reservation—the OPEN operation (with a create bit
set) provides these semantics.

The CLOSE operation releases the state accumulated by an OPEN.

8. Caching and Delegation

NFS has never implemented distributed cache coherence, nor supported concurrent write-sharing
in the absence of locking, and NFS Version 4 does not change that. However, client-side caching
is essential to good performance. NFS has always supported client caching - albeit with
restrictions and a loss of strict cache coherence.

NFS Version 4 differs from previous versions of NFS by allowing a server to delegate specific
actions on a file to a client to enable more aggressive client caching of data and to allow caching
of locking state for the first time. A server cedes control of file updates and locking state to a client
for the duration of a lease via a delegation.

8.1. Client-side Caching

NFS Version 4 file, attribute, and directory caching resembles that in previous versions. Attributes
and directory information are cached for a duration determined by the client. At the next use after
the end of a predefined timeout, the client will query the server to see if the file system object has
changed.

When opening a regular file, the client validates cached data for that file. The client queries the
server to determine if the file has changed. Using this information, the client determines if the
data cache for the file should be kept or flushed. When the file is closed, the client writes any
modified data to the server. This technique of close-to-open consistency has provided sufficient
consistency for most applications and users.

If an application wants strict serialized access to file data, share reservations or file locking of
specific file data ranges should be used.

Previous versions of NFS avoided the use of client-side data caching when record locking was in
effect. Version 4 defines rules that allow data caching during locking while maintaining cache
integrity. COMPOUND operations allow fetching the modified time for a file after obtaining a
record lock, without additional latency, simplifying the implementation of these rules.

8.2. Open Delegation

In NFS Version 4, when a file is only being referenced by a single client, responsibility for
handling all of the OPEN and CLOSE and locking operations may be delegated to the client by

the server. This eliminates OPEN and CLOSE requests, allows locking requests to be resolved
locally, and eliminates normal NFS client periodic cache consistency checks - reducing over-the-
wire traffic and associated latency. Since the server on granting a delegation guarantees the
client that there can be no conflicting OPEN operations, the cached data is assumed valid. The
server may also allow the client to retain modified data on the client without flushing at CLOSE
time, if it can be guaranteed that sufficient space will be reserved on the server ensuring that
subsequent WRITE operations will not fail due to lack of space.

When many clients share a file, in the absence of writing, the server may delegate the handling of
read-only OPEN operations to multiple clients. This allows OPEN and CLOSE operations to be
avoided. Since such a delegation will only persist in the absence of writers, the client is assured
that cached data is valid, without periodic consistency checks to the server.

A lease is associated with a delegation. If the lease expires, the delegation will be revoked, just
as with locks.

Delegation allows common patterns of limited sharing and read-only sharing to be dealt with
efficiently, avoiding extra latency associated with frequent communication with the server. When
these patterns no longer obtain, the delegation is revoked and normal client-side caching logic is
used.

8.3. Client Callbacks

Revocation of delegation requires the client to update state on the server to reflect changes made
by the client as part of the delegation, and then return the delegation to the server. Upon return of
the delegation, the server will centrally manage OPEN and locking operations.

Revocation is accomplished by making a callback. A callback is an RPC from the server to the
client to inform it of server actions. Because callbacks may have problems transiting firewalls,
callbacks are not required for proper operation of the protocol. A server will test whether a client
can respond to callbacks by making an initial CB_NULL request to the client. If a client fails to
respond, the server will not delegate authority to that client.

8.4. Delegations vs. Windows OpLocks

Delegation has many similarities to Opportunistic Locks (OpLocks) used by CIFS [Borr], and was
inspired by the benefits which that mechanism provides. The differences between them reflect the
different histories of the two protocols and the problems they solve.

Delegations differ from OpLocks in that a delegation is an optimization that is solely up to the
server while OpLocks are requested by the client. The ability to delegate depends on a network
configuration that the server can verify, plus specific sharing patterns.

When OpLocks are lost or not available, CIFS sends all operations to the server while NFS can
fall back to its standard modes of (periodically checked) client-side caching when delegations are
unavailable. This makes delegation less critical a feature, but delegation - when possible -
provides many performance benefits, particularly when applications are doing frequent file locking
operations.

Delegations can persist beyond the OPEN operation which gave rise to them, like Batch OpLocks
in Windows, allowing subsequent OPEN operations to be cached on the client. Delegated files
can be shared by many applications on a single client with the proper state for all transferred
back to the server upon delegation revocation.

9. Locking

NFS Version 4 locking is similar to the adjunct Network Lock Manager (NLM) protocol used with
NFS Versions 2 and 3, but it is tightly coupled to the NFS protocol to better support different
operating system semantics and error recovery.

A major failing of the NLM protocol was the detection and recovery of error conditions. The
design assumed that the underlying transport was reliable and preserved order. With NLM, an
unreliable network easily resulted in orphan locks on the server. In addition, if a client crashed
and never recovered, locks could be permanently abandoned, preventing any other client from
ever acquiring the lock.

9.1. Leases

The key change in NFS Version 4 locking is the introduction of leases for lock management.

A lease is a time-bounded grant of control of the state of a file, through a lock or delegation, from
the server to the client. During a lease interval a server may not grant conflicting control to
another client. A lease confers on the client the right to assume that a lock granted by the server
will remain valid for a fixed (server-specified) interval and is subject to renewal by the client. The
client is responsible for contacting the server to refresh the lease to maintain the lock.

The expiration of a lease is considered a failure in the communications between the client and the
server, requiring recovery. If the lease interval expires without a refresh from the client, the server
assumes the client has failed and may allow other clients to acquire the same lock. If the server
fails, on reboot the server waits a duration equal to a lease interval for clients to reclaim the locks
that they may still hold, before allowing any new lock requests.

Leases or token-based state management exists in several distributed file systems [Kazar90,
Macklem94, Srinivasan].

Most operating systems demand that a lock is irrevocable once acquired by an application. Unlike
leases used to manage cache consistency where leases are kept short to prevent unnecessary
delays in normal operations, the lock lease intervals can be substantially longer, reducing the
number of lease refreshes required, one of the primary drawbacks of a lease-based protocol.

In addition, the lease protects against a loss of the locking state by the client. A client exists in
two states: either all the locks held from a given server are correct or all are lost. A refresh of any
lock by the client validates all locks held by the client to a particular server. This reduces the
number of lease refreshes by the client from one per lock each lease interval, to one per client
each lease interval, eliminating another drawback of a lease-based protocol.

9.2. Mandatory Locking

Better interoperability with non-Unix operating systems is an important goal of NFS Version 4. A
key feature of the Windows operating systems, and available on some Unix operating systems, is
mandatory locking - the ability to block I/O operations by other applications on a file that contains
a record lock. The NLM protocol provided only for advisory locking which allowed cooperating
applications to synchronize I/O operations, but did not block other applications from performing
I/O operations to the file. To handle this additional semantic, the concept of a stateid was added
to NFS Version 4.

9.3. Share Reservations

To provide better interoperability, NFS Version 4 fully supports share reservations. A share
reservation grants a client access to open a file and the ability to deny other clients open access
to the same file. A share reservation is similar to a file or record lock, except that its granularity is
always on an entire file, and its lifetime equals the duration of the file open. Normal file and record
locks do not interact with share reservations - a share reservation is distinct from a record lock in
that it only governs the ability to open a file.

For example, an application may open a file for read access and acquire a share reservation
denying other subsequent opens that request write access. The NLM protocol supported clients
that use this style of lock to cooperate amongst themselves, but it did not enforce it between non-
cooperating clients. More importantly, a share reservation was not tied into other operations that
implicitly open a file, such as CREATE. This exposes a race condition where one client could
create a file, and before the second operation to acquire a share lock denying other clients
access is received, another client acquires a conflicting reservation. The addition of an explicit
OPEN operation correctly supports share reservations.

The OPEN operation takes as parameters the traditional desired access of read or write and, in
addition, allows the application to deny read or write access to other applications. The server
response contains a stateid that is used by the server to enforce share reservations. A
corresponding CLOSE operation allows a client to free the held share reservations.

9.4. Sequence IDs

The most problematic part of network locking is dealing with lock requests that arrive out of order
or are replayed. As an example, a client issues a sequence of lock, unlock, and lock requests. If a
misbehaved router replays a previous unlock request other clients may acquire a conflicting lock
and corrupt data. The RPC layer's transaction id will defend against many of these replay errors,
but the server duplicate request caches are frequently not large enough to handle even modest
windows of time [Juszczak]. Locking requests by an application in virtually all operating systems
are strictly ordered, defining a well-known state of the file. This requires that a server in a
distributed file system also process the locking requests in the required strict order.

NFS Version 4 adds to every lock and unlock operation a monotonically increasing sequence
number to provide at-most-once semantics. The server maintains for each lock owner the last
sequence number and the response sent. If a second request is received with the last sequence
number, the response is replayed under the assumption that the previous response was lost. If an
earlier sequence number is received then an error is returned as it must be a replay of a
previously received response. A sequence number beyond the next sequence number is also
rejected.

10. Attributes

The attribute model for NFS Version 4 is different from prior versions in providing a mechanism
for extensibility. NFS Version 4 defines three types of attributes:

 Mandatory
 Recommended
 Named

Mandatory and recommended attributes are defined in terms of a bit vector to allow efficient
implementation of operations that return or manipulate those attributes. A mask defines those
attributes that are to be manipulated - with unset bits representing attributes to be ignored.

10.1. Mandatory Attributes

Mandatory attributes represent the baseline attributes that must be supported or emulated by
every implementation. Mandatory attributes include:

 Object type
 Filehandle expiration type
 Change indicator
 Size
 UNIX LINK support
 UNIX SYMLINK support
 fsid
 Lease duration

10.2. Recommended Attributes

The recommended attributes include:

 ACL
 Archive bit
 Case insensitive
 Case preserving
 Change owner restricted
 No file name truncation beyond maximum
 Filehandle
 File ID
 Hidden
 Maximum file size
 Maximum number of links
 Maximum filename size
 Maximum read size
 Maximum write size
 MIME type
 UNIX mode bits
 Owner string
 Group string
 Modify time
 Create time
 Access time
 Space available to user
 File system free space
 File system total space
 Space used by object

ACLs are a special recommended attribute and are described below in the section on security.

10.3. Named Attributes

NFS Version 4 introduces named attributes for the first time. The model for named attributes is
simple. Associated with each file system object is a hidden directory containing all its named
attributes. The data associated with the named attributes is an uninterpreted (by NFS) stream of
bytes. A client would access named attributes in the following way:

 The OPENATTR operation sets the current filehandle to the named file attribute directory
for the file object

 READDIR and LOOKUP operations retrieve file handles for the various named attributes
associated with the original file system object.

Named attributes require support on the server, and are a feature of common file systems like
Windows NTFS.

11. Security Model

NFS relies on the underlying security model of RPC for its security services. A variety of
authentication flavors have been defined for use by NFS going back to the Diffie-Hellman public
key authentication scheme defined for use with NFS Version 2 [Taylor]. However, no model other
than the weakly authenticated UNIX permission scheme was ever widely adopted, limiting the
use of NFS in hostile networks (for example, universities).

While NFS Version 3 introduced the ACCESS procedure in part to support flexible ACL-based
access control, no agreement was ever reached on a common ACL format to allow
heterogeneous access control.

In the area of security, NFS Version 4 improves over NFS Versions 2 and 3 by:

 mandating the use of strong RPC security flavors that depend on cryptography
 negotiating the security used via a system that is both secure and in-band
 using character strings instead of integers to represent user and group identifiers
 supporting access control that is compatible with UNIX and Windows
 removing the Mount protocol.

11.1. GSS-API Framework

NFS is based on ONCRPC [RFC1831] and leverages its security architecture, recently bolstered
by the addition of a security flavor based on the Generic Security Services API (GSS-API), called
RPCSEC_GSS [RFC2203]. RPCSEC_GSS is a security flavor allocated under the same flavor
number space as the commonly used AUTH_SYS flavor; AUTH_SYS is flavor number 1,
RPCSEC_GSS is flavor number 6. The flavors between 1 and 6 represent efforts such as [Taylor]
to improve RPC security that became obsolete due to advancements in attacks based on brute
force [EFF] and better cryptanalysis [LaMacchia].

RPCSEC_GSS differs from AUTH_SYS and other traditional flavors in two ways:

 First, RPCSEC_GSS does more than authentication. It is capable, albeit at considerable
expense of CPU execution time [Eisler96], of performing integrity checksums and
encryption of the entire body of the RPC request and response. Hence, RPCSEC_GSS is
a security flavor, and not just an authentication flavor.

 Second, because RPCSEC_GSS simply encapsulates the GSS-API messaging tokens—
it merely acts as a transport for mechanism-specific tokens for security flavors like
Kerberos. Adding new security mechanisms (as long as they conform to GSS-API) does
not require re-writing significant portions of NFS or any other ONC RPC-based
application.

11.2. Mandated Strong Security

All versions of NFS are capable of using RPCSEC_GSS. The difference is that while an
implementation can claim conformance to NFS Versions 2 and 3 without implementing support
for RPCSEC_GSS, a conforming NFS Version 4 implementation must implement RPCSEC_GSS.

http://www.netapp.com/tech_library/3085.html

Furthermore, conforming NFS Version 4 implementations must implement security based on
Kerberos Version 5 (in this paper, simply Kerberos) [RFC1510] and LIPKEY [Eisler00], each of
which are GSS-API conforming security mechanisms.

11.2.1. Kerberos versus LIPKEY

Kerberos divides user communities into realms. Each realm has an administrator responsible for
maintaining a database of principals (users). Each realm has one master Key Distribution Center
(KDC), and one or more slave KDCs that give users tickets to access services on specific hosts
in a realm. Users in one realm can access services in another realm, but it requires the
cooperation of the administrators in each realm to develop trust relationships and to exchange
per-realm keys. Hierarchical organization and authentication of realms can reduce the number of
inter-realm relationships.

Kerberos has been used on other distributed file systems, such as the Andrew File System
[Howard], the Open Software Foundation's Distributed File System [Kazar], NFS Version 2 and 3
[RFC2623], and most recently, Microsoft's CIFS (Windows 2000) [Microsoft00]. Kerberos is an
excellent choice for enterprises and work groups operating within an Intranet, since it provides
centralized control, as well as single sign on to the network.

But NFS Version 4 is also designed to work outside of intranets on the global Internet. Kerberos
does not work well on the Internet. The user would need the cooperation of his local system
administrator to negotiate a trust relationship with the administrator of the remote realm.

The Low Infrastructure Public Key (LIPKEY) system provides an SSL-like model and equivalent
security for use on the Internet. LIPKEY is a GSS-API security mechanism using a symmetric key
cipher and server-side public key certificates.

The LIPKEY user experience is similar to that of HTTP over the Secure Sockets Layer (SSL). A
user is prompted for a user name and password. These are encrypted with a 128-but symmetric
session key. The session key is encrypted with the server's public key and all are sent to the
server. The client authenticates the server by comparing the latter's certificate with a list of trusted
Certification Authorities.

11.3. Why not SSL?

NFS Version 4 does not use SSL [SSL]. The primary issue with SSL is that it does not work over
connectionless protocols like UDP, whereas NFS does. The second problem is that as mentioned
previously, RPC has its own security architecture—it is unclear how to cleanly merge SSL and
RPC security. RPCSEC_GSS provides equivalent security, yet is compatible with flavors like
AUTH_SYS.

11.4. Kerberos in Windows 2000 vs. UNIX

As noted in [Ts'o], Windows 2000's Kerberos has some incompatibilities with most other Kerberos
implementations. Windows 2000 uses the pre-authentication field in Kerberos messages to
encode a proprietary representation of the privileged access groups (PAGs) that a user belongs
to. This way, when a Kerberized client talks to a Kerberized-server, the server knows immediately
what groups the user belongs to. This is both an efficient and non-interoperable scheme, which is
exacerbated by no published documentation on the format of the PAG list, and what the PAG
entries mean.

Most Kerberized servers outside of Windows 2000 would do something different. For example, an
NFS server in the UNIX space would map the principal name to the UNIX user identifier, and the

UNIX user identifier to the list of groups associated with the user. It is no less efficient to do it this
way, because it is possible to compute the mappings upon user addition to the directory services
domain that the NFS server lives in. This approach also has the virtue of being completely inter-
operable with non-UNIX clients.

The effect of PAGs on NFS is that if a Windows 2000-based NFS Version 4 client or server uses
PAGs, then it will not interoperate with a non-Windows 2000-based server or client. Otherwise,
there are no issues with the Windows 2000 and non-Windows 2000 nodes on the network
sharing the same Kerberos key space.

11.5. Negotiating Security

NFS Version 2 had no way to negotiate security, which meant that if an NFS server exported a
file system with something other than AUTH_SYS, there was no way for it to tell the client. Unless
the client mounted the file system with an explicit mount option for different security, the mount
attempt would fail.

NFS Version 3 enhanced the Mount protocol to include a list of security flavors that the client
could use to mount the file system. The problem with this approach is that the Mount protocol
itself was not secure. While in theory, the Mount protocol could use RPCSEC_GSS, in practice,
Mount servers were not required to support RPCSEC_GSS.

NFS Version 4 deals with negotiation of security by including a new SECINFO operation that
allows a client to ask what security the server requires for a given file object. The SECINFO
operation's arguments and results are secured using one of the mandatory security flavors. The
results of a SECINFO call define the RPC security flavors that should be used, and for each
flavor any required additional information. For example, if SECINFO specifies that AUTH_SYS
can be used, no additional information is needed. However, if SECINFO specifies to use
RPCSEC_GSS, because RPCSEC_GSS is merely a security mechanism switch more
information is needed. The client and server will then negotiate the Object Identifier of the GSS-
API mechanism, what quality of protection to use, and whether to use authentication, integrity
(checksummed arguments and results), or privacy (encrypted arguments and results—full user
data encryption).

11.6. String Identifiers

NFS Versions 2 and 3 represented users and groups via 32 bit integers. The NFS protocol uses
user and group identifiers in the results of a get attribute (GETATTR) operation and in the
arguments of a set attribute (SETATTR) operation. Using integers to represent users and groups
requires that every client and server that might connect to each other to agree on user and group
assignments. Not only is this impractical across the Internet, but problematic for some large
enterprises. Some feel that a secondary issue is that 32 bits to represent users is not large
enough.

NFS Version 4 represents users and groups in the form:
user@domain
or
group@domain
where domain represents a registered DNS domain, or a sub-domain of a registered domain. By
leveraging the global domain name registry and delegating user and group identifier control, NFS
Version 4 does not require IANA to develop yet another global registry to guarantee uniqueness.

One issue with using string names, instead of integers, is that UNIX systems like Solaris will still
be using integers in the underlying file systems stored on disk. This requires mapping string
names to integers and back. Since NFS clients and servers have done something similar with

security flavors like RPCSEC_GSS and AUTH_DH [Taylor] that use string names for principals
and not integers, we did not see a risk from removing integer based identifiers from the protocol.

11.6.1. UUIDs

We did consider Universal User Identifiers (UUIDs) instead of strings. However, UUIDs still have
the translation issue, since they are 128 bits long versus 32 bits for UNIX identifiers. Furthermore,
in situations where a client receives a GETATTR result with an untranslatable identifier, it was felt
that a string like ted@eisler.com would be more useful than a string of 128 bits. We anticipate
that UNIX implementers might consider adding a stat(2) system call variant that returns the file
system's native string representations if available.

11.7. Access Control Lists

An Access Control List, or ACL, is simply a list that describes which users and groups get access
to a file with what type of access (for example, read versus write). NFS Versions 2 and 3 do not
have support for an ACL attribute, although there are several proprietary protocols for
manipulating ACLs over NFS based on the POSIX Draft ACL specification. Such ACL support
never saw wide use, perhaps due to the proprietary nature of the protocols and that the POSIX
specification was never standardized.

NFS Version 4 includes ACL support based on the Windows NT model and not the POSIX model.
The reasons are that compared to the POSIX model, the NT model is both richer, and widely
deployed.

The richness of the NT model is seen in that an Access Control Entry (ACE) within an ACL can
be one of four types: ALLOW, DENY, AUDIT, or ALARM. ALLOW and DENY simply means the
ACE allows or denies the specified access to the entity attempting access. AUDIT means if the
entity in the ACE attempts the specified access, log the attempt. ALARM generates a system
dependent alarm if the entity in the ACE attempts the specified access. The POSIX model does
not support AUDIT and ALARM.

One major difference between the NT and POSIX ACL models prevents NT from being a strict
superset of the POSIX. In the NT model, the first ACE in the ACL that denies or allows access
corresponding to the principal, or the principal's group making the request, determines if access
is allowed. In the POSIX model, there are two kinds of ACEs: user entries and group entries. In
the POSIX model, the user identifier is checked against the user entries first, and if the access is
not unambiguously granted or denied, then the user's group identifiers are each checked against
the group entries in the ACL. We feel that in practice this subtlety is unimportant.

There do exist systems today with POSIX ACLs that are incompatible with the ACLs defined for
NFS Version 4. An NFS Version 4 server on such a system could continue to compute a user's
access to a file with an incompatible POSIX ACL per the POSIX draft. As long as the ACL on the
file does not change, there is no issue. When a client changes the ACL via the SETATTR
operation, the server can replace the incompatible POSIX ACL with an NFS Version 4 compatible
ACL as long as it assures that:

 the resulting ACL is not more permissive than the pre-existing POSIX ACL
 the resulting ACL is not more permissive than what the client intended.

11.8. Removing the Mount Protocol

Unlike NFS Versions 2 and 3, NFS Version 4 has no Mount protocol. As a byproduct, this closes
a security hole. Suppose there exists an exported directory called

 /export/alice/safe/A.

Suppose the permissions on

 /export/alice/safe

do not allow anyone but safe's owner, Alice, access, but the permissions on /export/alice/safe/A
are wide open. An NFS Version 2 or 3 client would normally be allowed to get a filehandle for
/export/alice/safe/A and mount it, thus allowing a second party wrongful access.

Since NFS Version 4 has no way to distinguish mount attempts from other accesses, any client
but Alice that attempts to get a filehandle for /export/alice/safe/A will be denied.

12. Migration and Replication

To improve availability, NFS Version 4 has added features to support file system migration and
replication.

A file system can migrate to a new server and the clients notified of the change by means of a
special error code. A client is informed of the new location by means of the fs_locations file
attribute. It may then access the file system on the new server transparently to applications
running on the client.

The fs_locations attribute may also designate alternate locations for a (read-only) file system. If a
client finds a file system unresponsive or performing poorly, it may choose to access the same
data from another location. If a server implementation is concerned about the persistence of
filehandles in the face of migration, it can vend volatile filehandles. The client will re-LOOKUP
open files using saved pathname components on switching to a new server.

13. Minor Versioning

This is the second major revision of NFS. In the past, NFS has been extended by overloading the
semantics of existing procedures—without recourse to a formal protocol revision. Unfortunately,
this sometimes hurt interoperability. One goal of the NFS Version 4 effort was to provide a
framework for minor versioning of the protocol to facilitate rapid, simple evolution.

Minor versioning is left mostly undefined in the base NFS Version 4 protocol. A Reserved
Operation 2 exists to provide minor version negotiation in a future minor revision. The
COMPOUND arguments also include a minor version field (currently 0). Via the reserved
operation, a client will query the server for minor versions supported—negotiating capabilities in a
similar fashion to today's version binding in RPC. Minor version negotiation is client driven. A
minor version 0 server (the current protocol definition) identifies itself as only supporting version 0
by returning NFS4ERR_NOTSUPP—operation not supported - on attempts to invoke Reserved
Operation 2.

The base specification (minor version 0) has some recommended rules for future work groups on
managing the creation of a minor version. For example, allowing extension through the addition of
additional attributes, but avoiding deletion of attributes existing in previous minor versions.

14. Modifications for Use on the Internet

In the area of suitability for the Internet, NFS Version 4 improves over NFS Versions 2 and 3 by:

 requiring TCP as a transport
 defining COMPOUND operation to reduce round-trip latency
 defining a global user identifier name space
 mandating strong security based on a public key scheme
 enabling operation through firewalls

14.1. TCP is Mandatory

The NFS Version 4 specification requires that any transport used provide congestion control. The
easiest way to do this is via TCP. By using TCP, NFS Version 4 clients and servers will be able to
adapt to known frequent spikes in unreliability on the Internet [Martin].

14.2. Reduced Round Trip Latency

As illustrated in the examples of section 4.1, the COMPOUND procedure enables clients to pack
more operations in a single request, thus significantly reducing round trip latency.

14.3. Global User Name Space

As described in 11.6, user and group identifiers are string names allocated relative to DNS
domain names. Because the identifiers are completely generic, with no bias toward UNIX, NT, or
any other operating system, the consumer need not be impacted if the service provider changes
platforms, nor is the service provider impacted if the consumer changes platforms.

14.4. Mandatory Security

As described in 11.2., NFS Version 4 clients and servers must support LIPKEY, a public key
scheme that has similar properties to SSL. Both SSL and LIPKEY share properties that make
them suitable for the Internet, namely that customers and vendors can get together without prior
establishment of complex trust relationships.

The e-commerce market place has proven to be quite dynamic. If another security technology
replaces the simple public key approaches of SSL and LIPKEY, the flexibility of GSS-API will
ease the introduction of this new security mechanism.

14.5. Firewall Friendly

To access an NFS server, an NFS Version 2 or 3 client must contact the server's portmapper to
find the port of the Mount server. It contacts the Mount server to get an initial file handle. Then it
contacts the portmapper to get the port of the NFS server. Finally, the client can access the NFS
server.

This creates problems for using NFS through firewalls, because firewalls typically filter traffic
based on well known port numbers. If the client is inside a firewalled network, and the server is
outside the network, the firewall needs to know what ports the portmapper, Mount server, and
NFS server are listening on. The Mount server can listen on any port, so telling the firewall what
port to permit is not practical. While the NFS server usually listens on port 2049, sometimes it
does not. While the portmapper always listens on the same port (111), many firewall
administrators, out of excessive caution, block requests to port 111, from inside the firewalled
network to servers outside the network.

NFS Versions 2 and 3 are not practical to use through firewalls.

NFS Version 4 solves the issue by eliminating the Mount protocol, and mandating that the server
will listen on port 2049. This means that NFS Version 4 clients do not need to contact the
portmapper, and do not need to access services on floating ports, making firewall configuration
as simple as configuration for HTTP.

15. A Common Internet File System

One ring to rule them all,
Tolkien

NFS Version 4 lends itself to several applications on the Internet.

15.1. An Open Download Protocol

The Internet is rapidly becoming the primary means for distributing large files containing
installable software, documents, and multi-media. Most downloads use the File Transfer Protocol
(FTP), or HTTP. For slow links, large file downloads have an almost certain chance of aborting,
with no recourse for the user but to start over again. While NFS is designed to be a file access
protocol, because NFS allows the clients to read files from arbitrary offsets, it is a superior file
transfer protocol. If the TCP connection breaks due to timeout or other reasons, the client can
simply re-connect and continue (transparently to the user). With the use of LIPKEY, the client and
server can protect the transfers from third party eavesdropping or tampering.

15.2. Consumer Backup and Restore

The cost of disk space on personal computers seems to be approaching US$1 (or 1.04Ç or
Ñ107) per gigabyte. With the capability to store more data, the odds of a user losing data are
increasing. Outside the home, data management policies are in place to ensure that valuable
data is not lost due to a failure in the storage system. These policies include backup of data to
tertiary storage, and the use of redundant arrays of disks or file servers. Within the home, it is
impractical to expect the average consumer to implement formal data management. While we are
seeing the emergence of low-end appliances for storing data redundantly, that these appliances
are co-located with the user's primary data violates the principle of having off-site backups.

Several web sites today provide file backup and restore services. By definition, these web sites
are off site. As high bandwidth links like DSL and cable modem become available to users, it
becomes increasingly practical to backup larger amounts of data, obviating the need for on-site
backups at home.

So far, these services are based on HTTP and FTP, which suffer from the same problems as file
download for large file transfer. Again, NFS Version 4, secured via LIPKEY, offers a superior
approach, providing strong authentication and privacy.

15.3. The Internet Disk

Combining high-bandwidth persistent connections like DSL with NFS Version 4 delegation and
sophisticated caching allows one to envision a time when users will prefer that the master copies
of their data always exist on the service provider - who can better deal with the complexity of
reliable data management.

For example, in the morning, before work, the user can access his data, which results in a
transparent download of a subset of it to local storage, and manipulate it locally. Before going to
work, the user "saves" it. When the user arrives at work, he will be able to access the same

version of the data he was working on at home, because either his NFS Version 4 capable
desktop at home has synchronized its dirty cache with the server, or the server will revoke the
delegation to gain access to the latest data. The user at the office will be blocked from accessing
his data until the server has a consistent copy.

16. Future Work

[Pawloswki] described several follow-on tasks for NFS Version 3. Of those tasks, NFS Version 4
addresses strong security, while it does not provide support for concurrent write sharing (though
we introduce delegations for improved caching performance), nor does it support disconnected
operation. Changes to the export model and allowing mount point crossing when browsing from a
single server root partially address consistent name space construction.

Curiously missing from the analysis in 1994 is recognition of the growing importance of support
for file sharing on the Internet - which the design NFS Version 4 strongly reflects.

Given that track record of predictions, let's take a stab at presenting expected future work in the
NFS Version 4 space.

16.1. IETF Standardization

At the time of this writing, the working draft of the NFS Version 4 protocol specification has been
submitted to the Internet Engineering Steering Group for consideration as a Proposed Standard -
the first formal step towards the goal of achieving Internet Standard acceptance [RFC2026].
Specifications intended to become Internet Standards evolve through a set of maturity levels
known as the "standards track". These maturity levels - Proposed Standard, Draft Standard, and
Standard - reflect movement through the IETF standards process. While achieving Proposed
Standard designation does not require implementation experience, we chose to prototype the
specification to prove out concepts.

The construction of two independent, interoperable conforming implementations based on the
specification are required to achieve Draft Standard status. Some changes may occur between
Proposed Standard and Draft Standard status, but these are not expected. A Draft Standard is
normally considered to represent the final specification - any changes made to the protocol
beyond this reflect specific (otherwise insoluble) problems. Internet Standard achievement follows
widespread experience with the Draft Standard and its implementations.

16.2. Minor Versioning

Details of minor version negotiation, and change coordination for minor versioning, remain for
future versions of the working group. Reserved operation 2 provides the ability to evolve NFS
Version 4. Some suggested rules for future efforts in minor versioning appear in the draft
specification.

16.3. Performance

The reduction in network latency with the use of the COMPOUND procedure comes at the cost of
additional complexity in operation coding and decoding on the client, and increased complexity in
handling error returns. More experience is needed in this area to understand the costs.

The attribute model and the use of a bit mask to describe attributes of interest to be fetched by
the client generated much discussion. The trade-off of possibly reduced work on the server in
loading only those attributes of interest is pitted against the increased decode complexity (and

branching) in the implementation to handle a variable attribute return. The costs of the attribute
model will be explored during further implementation.

16.4. Migration and Replication

A server in NFS Version 4 can inform a client when multiple copies of a file system exist, or when
a file system has moved. The client uses this information to adapt to changing network conditions
and file system relocation. This provides a framework for migration and replication.

NFS Version 4 does not address server-to-server file system migration protocols or the issues of
maintaining replica consistency and migration atomicity. It remains for future working groups to
define. Until then, vendor-specific solutions may arise.

16.5. Single System Image or Name Space

[Kazar, Howard, Microsoft99] describe approaches to providing a shared consistent name space
that hides server details of data location from users. An NFS Version 4 server hides some details
of data location by presenting a per-server single image of all exported file systems to a client.
There is interest in providing a general scheme for a global, server independent name space
within the context of NFS Version 4.

16.6. High Performance Locking

NFS Version 4 maintains lock ordering and supports mandatory blocking locks, but these features
are based on a polling model. Fast lock cycling is critical to application locking performance, and
this may be a weakness in our model and an area for future redesign.

16.7. SFS Benchmark

The SPEC organization's SFS benchmark is a standard for measuring the performance of NFS
implementations [Robinson]. An NFS Version 4 version of the benchmark remains to be done.

17. Resources for Developers

The primary site for NFS Version 4 information is:
 http://www.nfsv4.org

Pointers to relevant sections of the Internet Engineering Task Force site:
 http://www.ietf.org

can be found there.

The CITI group at the University of Michigan is developing an open source reference
implementation, and their work can be accessed at:
 http://www.citi.umich.edu/projects/nfsv4/

18. Acknowledgements

The NFS Version 4 working group in the IETF contributed immensely not only to the specification,
but to the discussion around the changes to the architecture and semantics of the protocol.
Spencer Shepler was the editor of the NFS Version 4 protocol specification through its life in the
working group. EMC, Hummingbird Communications Ltd. Network Appliance Inc., Sun

http://www.nfsv4.org/
http://www.ietf.org/
http://www.citi.umich.edu/projects/nfsv4/

Microsystems, Inc., and the University of Michigan/CITI research group participated in the first
interoperability testing. Gordon Waidhofer often acted as the working group's conscience.

19. Bibliography

[Borr]
Borr. A., "SecureShare: Safe UNIX/Windows File Sharing through Multiprotocol Locking,"
2nd USENIX Windows NT Symposium, August 3-4, 1998.

[CIFS]
http://msdn.microsoft.com/workshop/networking/cifs/default.asp

[Cthon]
Sun Microsystems, Inc., "Sun Enterprise Authentication Mechanism 1.0 Interoperability
Notes," 1999.

[EFF]
Electronic Frontier Foundation, John Gilmore (Editor) (1998). "Cracking DES: Secrets of
Encryption Research, Wiretap Politics & Chip Design," O'Reilly & Associates, ISBN 1565925203.

[Eisler96]
Eisler, M., Schemers, R., and Srinivasan, R., "Security Mechanism Independence in ONC RPC,"
Proceedings of the Sixth Annual USENIX Security Symposium, 1996, pp. 51-65.

[Eisler00]
Eisler, M. (2000), "LIPKEY - A Low Infrastructure Public Key Mechanism Using SPKM," a work
in progress to be published as an RFC by the Internet Engineering Task Force.

[Howard]
Howard, J.H., Kazar, M.L., Menees, S.G., Nichols, D.A., Satyanarayanan, M., Sidebotham, R.N.,
West, M.J., "Scale and Performance in a Distributed File System," ACM Transactions on
Computer Systems 6(1), February, 1988.

[Juszczak]
Juszczak, C., "Improving the Performance and Correctness of an NFS Server," Proceedings of the
USENIX Winter 1989 Conference.

[Kazar]
Kazar, M.L., Leverett, B., et.al, "Decorum File System Architectural Overview," Proceedings of
the USENIX Summer 1990 Conference.

[Jaspan]
Jaspan, B., "GSS-API Security for ONC RPC," 1995 Proceedings of The Internet Society
Symposium on Network and Distributed System Security, pp. 144-151.

[LaMacchia]
LaMacchia, B. A., and Odlyzko, A. M. (1991). "Computation of Discrete Logarithms in Prime
Fields," Designs, Codes and Cryptography," pp. 47-62.

[Macklem]
Macklem, R., "Not Quite NFS, Soft Cache Consistency for NFS," Proceedings of the USENIX
Winter 1994 Conference.

[Martin]
Martin, R. P., Culler, D. E., "NFS Sensitivity to High Performance Networks,"

[Microsoft99]
Microsoft Corp., "Microsoft Distributed File System."

[Microsoft00]
Microsoft Corp., "Step-by-Step Guide to Kerberos 5 (krb5 1.0) Interoperability," January 26,
2000.

[MIT]
Massachusetts Institute of Technology (1998). "Kerberos: The Network Authentication
Protocol," The Web site for downloading MIT's implementation of Kerberos Version 5, including
implementations of RFC 1510 and RFC 1964.

[Mogul]
Mogul, J. C., "Recovery in Spritely NFS," DEC WRL Research Report 93/2, Digital Equipment
Corp. Western Research Lab.

http://msdn.microsoft.com/workshop/networking/cifs/default.asp
http://www.connectathon.org/seam1.0/
http://www.connectathon.org/seam1.0/
http://www.farcaster.com/papers/crypto-field/index.htm
http://www.farcaster.com/papers/crypto-field/index.htm
http://www.cs.rutgers.edu/~rmartin/papers/snfs.ps
http://www.microsoft.com/ntserver/nts/downloads/winfeatures/NTSDistrFile/AdminGuide.asp
http://www.microsoft.com/windows2000/library/planning/security/kerbsteps.asp
http://web.mit.edu/kerberos/www/index.html
http://web.mit.edu/kerberos/www/index.html
http://www.research.digital.com/wrl/techreports/abstracts/93.2.html

[Pawlowski]
Pawlowski, B. Juszczak, C., Staubach, P., Smith, C., Lebel, D., Hitz, D., "NFS Version 3 Design
and Implementation." Proceedings of the USENIX Summer 1994 Technical Conference.

[RFC1094]
Sun Microsystems, Inc., "Network Filesystem Specification," RFC 1094, the NFS Version 2
protocol specification.

[RFC1510]
Kohl, J., and Neuman, C. (1993). "The Kerberos Network Authentication Service (V5)," RFC
1510.

[RFC1813]
Callaghan, B., Pawlowski, B. and Staubach, P., "NFS Version 3 Protocol Specification," RFC
1813, June 1995.

[RFC1831]
Srinivasan, R., "RPC: Remote Procedure Call Specification Version 2," RFC 1831, August
1995.

[RFC1832]
Srinivasan, R., "XDR: External Data Representation Standard," RFC 1832, August 1995.

[RFC1964]
Linn, J. (1996). "The Kerberos Version 5 GSS-API Mechanism," RFC 1964.

[RFC2026]
Bradner, S., "The Internet Standards Process - Revision 3," RFC 2026, October 1996.

[RFC2054]
Callaghan, B., "WebNFS Client Specification," RFC 2054, October 1996.

[RFC2055]
Callaghan, B., "WebNFS Server Specification," RFC 2054, October 1996.

[RFC2203]
Eisler, M., Chiu, A., Ling, L., "RPCSEC_GSS Protocol Specification," RFC 2203, September
1997.

[RFC2339]
The Internet Society, Sun Microsystems, Inc., "An Agreement Between the Internet Society,
the IETF, and Sun Microsystems, Inc. in the matter of NFS V.4 Protocols," RFC 2623, June
1999.

[RFC2623]
Eisler, M., "NFS Version 2 and Version 3 Security Issues and the NFS Protocol's Use of
RPCSEC_GSS and Kerberos V5," RFC 2623, June 1999.

[RFC2624]
Shepler, S., "NFS Version 4 Design Considerations," RFC 2624, June 1999.

[Robinson]
Robinson, D., "The Advancement of NFS Benchmarking: SFS 2.0," Proceedings of the 13th
Systems Administration Conference - LISA '99

[Sandberg]
Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D., Lyon, B., "Design and Implementation of the
Sun Network Filesystem," Proceedings USENIX Summer 1985.

[Shepler]
Shepler, S., Beame, C., Callaghan, B., Eisler, M., Noveck, D., Robinson, D., Thurlow, R., "NFS
Version 4 Protocol," a work in progress to be published as an RFC by the Internet Engineering
Task Force, 2000.

[Taylor]
Taylor, B., Goldberg, D. (1986). "Secure Networking in the Sun Environment," Proceedings of the
1986 Summer USENIX.

[Ts'o]
Ts'o, T. (1997), "Microsoft 'Embraces and Extends' Kerberos V5," ;login: - USENIX News.

[Srinivasan]
Srinivasan, V., Mogul, J. C., "Spritely NFS: Implementation and Performance of Cache
Consistency Protocols," DEC WRL Research Report 89/5, Digital Equipment Corp. Western
Research Lab. Also in Proc. Of the Twelfth ACM Symposium on Operating System Principals.

http://www.netapp.com/ftp/NFSv3_Rev_3.pdf
http://www.netapp.com/ftp/NFSv3_Rev_3.pdf
http://www.ietf.org/rfc/rfc1094.txt
http://www.ietf.org/rfc/rfc1510.txt
http://www.ietf.org/rfc/rfc1813.txt
http://www.ietf.org/rfc/rfc1831.txt
http://www.ietf.org/rfc/rfc1831.txt
http://www.ietf.org/rfc/rfc1964.txt
http://www.ietf.org/rfc/rfc2026.txt
http://www.ietf.org/rfc/rfc2054.txt
http://www.ietf.org/rfc/rfc2055.txt
http://www.ietf.org/rfc/rfc2203.txt
http://www.ietf.org/rfc/rfc2339.txt
http://www.ietf.org/rfc/rfc2339.txt
http://www.ietf.org/rfc/rfc2623.txt
http://www.ietf.org/rfc/rfc2623.txt
http://www.ietf.org/rfc/rfc2624.txt
http://www.usenix.org/events/lisa99/robinson.html
http://www.nfsv4.org/
http://www.nfsv4.org/
http://www.usenix.org/publications/login/1997-11/embraces.html
http://www.research.digital.com/wrl/techreports/abstracts/89.5.html
http://www.research.digital.com/wrl/techreports/abstracts/89.5.html

[UTF8]
The Unicode Consortium.

© 2005 Network Appliance, Inc. All rights reserved. Specifications subject to change without notice. NetApp, NetCache, and the Network Appliance logo are
registered trademarks and Network Appliance, DataFabric, and The evolution of storage are trademarks of Network Appliance, Inc., in the U.S. and other countries.
Oracle is a registered trademark of Oracle Corporation. All other brands or products are trademarks or registered trademarks of their respective holders and should be
treated as such.

http://www.unicode.org/

	Abstract
	1. Background
	1.1. Requirements

	2. The NFS Version 4 Protocol
	3. File System Model and Sharing
	3.1. Exporting File Systems
	3.2. Pseudo-file Systems

	4. The COMPOUND Procedure
	4.1. An Example
	4.2. Properties of the COMPOUND Procedure

	5. Multi-component LOOKUP
	6. Important Data Structures
	6.1. Filehandles
	6.1.1. Persistent vs. Volatile Filehandles
	6.2. Client ID
	6.3. State ID

	7. OPEN and CLOSE
	8. Caching and Delegation
	8.1. Client-side Caching
	8.2. Open Delegation
	8.3. Client Callbacks
	8.4. Delegations vs. Windows OpLocks

	9. Locking
	9.1. Leases
	9.2. Mandatory Locking
	9.3. Share Reservations
	9.4. Sequence IDs

	10. Attributes
	10.1. Mandatory Attributes
	10.2. Recommended Attributes
	10.3. Named Attributes

	11. Security Model
	11.1. GSS-API Framework
	11.2. Mandated Strong Security
	11.2.1. Kerberos versus LIPKEY
	11.3. Why not SSL?
	11.4. Kerberos in Windows 2000 vs. UNIX
	11.5. Negotiating Security
	11.6. String Identifiers
	11.6.1. UUIDs
	11.7. Access Control Lists
	11.8. Removing the Mount Protocol

	12. Migration and Replication
	13. Minor Versioning
	14. Modifications for Use on the Internet
	14.1. TCP is Mandatory
	14.2. Reduced Round Trip Latency
	14.3. Global User Name Space
	14.4. Mandatory Security
	14.5. Firewall Friendly

	15. A Common Internet File System
	15.1. An Open Download Protocol
	15.2. Consumer Backup and Restore
	15.3. The Internet Disk
	16. Future Work
	16.1. IETF Standardization
	16.2. Minor Versioning
	16.3. Performance
	16.4. Migration and Replication
	16.5. Single System Image or Name Space
	16.6. High Performance Locking
	16.7. SFS Benchmark

	17. Resources for Developers
	18. Acknowledgements
	19. Bibliography

