
T E C H N I C A L R E P O R T

The Evolution of NFS
Dave Hitz & Andy Watson | Network Appliance

 TECHNICAL REPORT

 N

etw
ork A

ppliance, a pioneer and industry
leader in data storage technology, helps
organizations understand and m

eet
com

plex technical challenges w
ith

advanced storage solutions and global data
m

anagem
ent strategies.

Network Appliance Inc.

1

T E C H N I C A L R E P O R T

Table of Contents
Introduction .. 3
1. NFS changes since 1985... 3

Close-to-Open File Consistency... 3
Automounter... 4
Performance Improvements ... 4
NVRAM .. 4
Dynamic Retry .. 4
Improved Retry Cache Heuristics .. 4
Client-Side Disk Caching .. 5

2. NFSv3.. 5
Large Block Transfers ... 5
Safe Asynchronous Writes ... 5
Improved Attribute Returns .. 6
The Readdirplus Operation... 6

3. Other Recent Changes and Future Possibilities .. 6
NFS Over TCP... 6
Kerberized NFS .. 7
RSA Encryption.. 7
WebNFS .. 7

4. Conclusion ... 7

Network Appliance Inc.

2

T E C H N I C A L R E P O R T

Introduction
NFS version 3 (NFSv3) arrived almost exactly ten years after Sun Microsystems originally
introduced NFS. This leaves some people wondering: What took so long? Will it be another ten
years before NFS gets another fresh coat of paint?
In part, these questions reflect a conflation between NFS-the- protocol and NFS-the-
implementation. While the NFS protocol itself remained unchanged until NFSv3, NFS
implementations have changed substantially in the past ten years, and they will continue to
change in the future even without another protocol revision.

The menu below outlines the evolution of NFS and reflects the sequence of topics discussed in
this document.

Many people are surprised that a protocol can change so much without a protocol revision. The
NFS specification RFC 1094 defines the exact format of NFS packets transmitted over the
network, but it leaves great flexibility in the hardware and software that actually send the packets.
In addition, a protocol can have some flexibility designed in from the start.

For instance, NFS implementations have traditionally used UDP for remote procedure calls
(RPC), but the RPC specification allows either UDP or TCP. Finally, services such as the
automounter can be added to improve NFS without any change at all to the protocol or its
implementation.

1. NFS changes since 1985
The changes since 1985, when Sun first released NFS, have been made either at the
implementation level, or by adding related features that have improved NFS without changing the
protocol itself.

Close-to-Open File Consistency

In the very early days of NFS, updates made to a file on one NFS client might not show up on
another NFS client for many seconds. At first this wasn't a problem because users rarely
used files from two NFS clients at once. This inconsistency became unacceptable as window
systems became popular, making it easy for a single person to use more than one computer
at a time. One might edit a source file on one NFS client, for instance, but compile it on
another.

Modern NFS implementations make accessing a file from multiple NFS clients safe by
supporting "close-to-open" consistency. This means that if you write and then close a file on
one client, and then open and read that same file on another client, the data on the second
client is guaranteed to be up-to-date.

This is implemented in the NFS client by writing all modified file data to the server in the
close(2) system call, and by checking with the NFS server to make sure that any locally
cached data is up-to-date in the open(2) system call.

Close-to-open consistency is a perfect example of how an implementation change can
dramatically improve a protocol without a formal revision.

Network Appliance Inc.

3

T E C H N I C A L R E P O R T

Automounter

The automounter was added in order to allow system administrators to create a global
network name space for their organization. The initial scheme of requiring all NFS
mountpoints to be added to all clients' /etc/fstab files was cumbersome, but with NIS and the
automounter, it is possible to manage a corporate-wide name space centrally. The
automounter is an example of how a new feature can improve NFS without requiring any
change to the protocol itself, or to its implementation.

Performance Improvements

There have been many performance enhancements to NFS since it was introduced in 1985.
Indeed, more improvements have been introduced than can be discussed here in detail, but a
few are especially interesting:

 Non-Volatile RAM (NVRAM) to improve write performance;

 Dynamic Retry Time Adjustment;

 Improved Retry Cache Heuristics; and

 Client-side Disk Caching.

NVRAM

The biggest performance problem with the early NFS implementations was the requirement
that the server write data to disk before responding to client write requests. Servers are still
required to execute "safe" write operations (though with NFSv3 there are new options
described later in this document).

This has been largely solved, at least in high performance servers, with the use of Non-
Volatile RAM. By temporarily storing the data from NFS Write operations in NVRAM, servers
are free to respond to client Write requests without waiting for their own Write operations to
complete to disk.

Dynamic Retry

Dynamic retry allows clients to adjust their NFS retry values over time based on the
performance they see from the server. If a client notices that a server is slow, it increases the
retry timeout value to avoid useless retries. If a client notices that a server is fast, it reduces
the retry timeout value, so that retries occur faster when a packet is lost.

Improved Retry Cache Heuristics

A few years ago, Chet Juszczak described a set of improved retry cache heuristics in a
USENIX paper ["Improving the Performance and Correctness of an NFS Server," USENIX
Conference Proceedings, January 1989, pp 53-63]. These techniques have now been
incorporated into most NFS server implementations. The basic idea is that in some cases the
server can tell that a client's retry request is probably redundant, in which case it can safely
ignore the request and suppress a retransmission of the reply. This reduces network
congestion under heavy load.

Network Appliance Inc.

4

T E C H N I C A L R E P O R T

Client-Side Disk Caching

The most interesting performance improvement is probably the "CacheFS" feature introduced
in SunOS 2.4, which allows NFS clients to cache NFS-accessed files on disk, instead of in
memory. Many people have the misconception that client caching on disk is an AFS feature
that NFS cannot support; in fact, there is nothing in the NFS protocol that indicates where
clients can cache data. Whether to store cached data in memory or on disk is an
implementation decision that has nothing to do with the format of bits that are sent over the
network.

2. NFSv3
Despite all the changes that have occurred without a protocol revision, there are some changes
that do require the protocol itself to be modified. The driving force behind NFSv3 was the desire
to handle 64-bit file sizes. This has become important as CPU chips like the SGI (formerly MIPS)
R10000, DEC Alpha, and Sun UltraSPARC have started to support 64-bit integers.

Since the initial NFS protocol specification defined file sizes as being 32 bits long, supporting 64-
bit file sizes required the NFS protocol revision to be updated.

Protocol revisions are rare, so it isn't sensible to make just one change. As a result, NFSv3
includes several other changes along with the large file size support. The most interesting are a
collection of performance improvements described below. (For a more complete description of
NFSv3, see "NFS Version 3 Design and Implementation," by Brian Pawlowski, Chet Juszczak,
Peter Staubach, Carl Smith, Diane Lebel, and David Hitz, USENIX, June 1994, Boston, MA. See
also RFC 1813.)

As of April 1996, the following vendors have implemented NFSv3 servers and/or clients: Cray
(now part of SGI), DEC, NetApp, SGI, and Sun. There are also numerous NFSv3 client
implementations for PCs, from companies like FTP, Hummingbird, NetManage, and others.

Large Block Transfers

The NFSv2 protocol specification restricts read and write operations to 8 KB (kilobytes). In
NFSv3, the client and server can negotiate any size they like for reads and writes. Current
NFSv3 implementations are indicate a consensus for using 32-KB transfer sizes for 10- and
100-Mbps (Megabit per second) networks, and 48-KB in HiPPI environments which run at
100 MBps (MegaByte per second) or higher.

Allowing the client and server to negotiate the optimal transfer size provides flexibility that will
allow NFSv3 implementations to evolve in the future, if necessary, in case new networking
technology makes even larger block sizes desirable.

Safe Asynchronous Writes

This feature allows the server to reply to writes immediately, instead of waiting for the data to
be put safely on disk or in NVRAM. A new operation, called Commit, lets clients check with
the server at some point after the WRITE operation, to verify that the server actually has
written the data. The client is required to keep its own copy of the written data until the

Network Appliance Inc.

5

http://www.netapp.com/tech_library/hitz94.html

T E C H N I C A L R E P O R T

Commit succeeds, and if the Commit fails, the client is required to resend its copy of the
written data.

For systems without NVRAM, this feature improves write performance for large files. On
servers that do use NVRAM, it can reduce the CPU time spent copying data into NVRAM,
thereby increasing the total throughput capability of the server.

NFSv3 support for asynchronous writing does not enhance by much the speed with which
small files can be written. (Writing a small file might only require one or two async Write
requests followed by a Commit.) And it doesn't help operations such as Create, Remove, and
Rename at all. Therefore, NVRAM will continue to be critical to fast NFS service, even with
NFSv3.

Improved Attribute Returns

In NFSv2, some operations return less information than they should. For instance, the
Symlink operation creates a new link, but it does not return the file handle or attributes of the
link. As a result, an NFSv2 client must send a Lookup request immediately after the Symlink.

In NFSv3, operations return additional information as appropriate, thus reducing the total
number of operations that need to be sent.

The Readdirplus Operation

In NFSv2, the Readdir operation returns the names of the files in a directory, but not the
attributes. So to handle a command like "ls -l", the Readdir must be followed by a Lookup
operation for each file in the directory. An "ls -l" on a directory with 100 entries would require
101 NFS operations.

NFSv3 supports a Readdirplus operation that returns both directory names and file attributes.
As a result, "ls -l" could be handled with just one Readdirplus operation. This is especially
useful in speeding up recursive tree-walking commands like "find" and "ls -R".

3. Other Recent Changes and Future Possibilities
Just as we saw ongoing evolution of NFS implementations prior to a change in the NFS protocol
itself, this process will continue. Even now that NFSv3 is seeing widespread support, there will
still be additional changes that do not require protocol modifications. A few examples of the
ongoing evolution of NFS are discussed below.

NFS Over TCP

NFS network traffic can be packaged into two different kinds of IP datagrams: UDP and TCP.
Traditionally, NFS has used UDP for nearly all commercially-available implementations.
Recently, several vendors (including Network Appliance) have introduced support for NFS
over TCP. There are differences between UDP and TCP, affecting network utilization and
performance, which should be considered when deciding which to use for NFS.

Running NFS over TCP instead of UDP does not require a protocol revision because the
RPC (Remote Procedure Call) layer used by NFS is already defined to work over either UDP
or TCP.

Network Appliance Inc.

6

T E C H N I C A L R E P O R T

Kerberized NFS

Kerberos is a method of secure authentication originally developed as part of MIT's Project
Athena. "Kerberizing" NFS is usually only considered in high-security environments, or when
operating over a WAN (especially an widely-shared WAN like the Internet).

Although some people have experimented with Kerberos to make NFS more secure, it is not
yet widely available. It seems likely that Sun will move to productize this more formally, and
that other vendors will follow suit. In particular, although Kerberos Version 4 has been used in
recent years, various improvements in Kerberos Version 5 make it a more likely candidate for
Sun and other vendors to implement as a standard, interoperable adjunct to NFS.

RSA Encryption

In many network environments, and especially across WAN or Internet links, other users can
potentially use their systems to snoop traffic on the shared network. This might give them
knowledge of passwords, file contents, or NFS file handles. Encryption can be used to
prevent unauthorized access to information in transit, by making it useless to anyone lacking
the keys.

For use with NFS, the two most commonly discussed methods of encryption are RSA and
DES. RSA offers stronger encryption than DES, but at the cost of slower performance.
Therefore, for all but the most stringent of secure environments, RSA is used to encrypt only
the "envelope" around a payload of DES-encrypted data. Also, by varying the number of bits
in the encryption key, the user can adjust the strength of encryption as a trade-off with
performance.

With or without DES, RSA is a leading candidate for inclusion in several vendors' future
software releases of NFS. Support for RSA does not require a modification to the NFS
protocol specification, because the RPC layer beneath NFS is already architected for this
capability.

WebNFS

Recently, Sun has proposed a variation of NFS for use with the Web: WebNFS. Just as many
hypertext links are resolved by accessing HTML-formatted documents (indicated by the
"http:" URL designation), and others result in downloads via the file transfer protocol ("ftp:"
URL designation), a link identified by the proposed "nfs:" URL designation would result in a
temporary NFS session to provide file access. The design of WebNFS illustrates the
extensibility of the NFS protocol.

4. Conclusion
It seems likely that most long-lived, wide-spread standards survived largely because they could
adapt to changing requirements over time. FORTRAN, for instance, has remained an important
programming language for decades because it has repeatedly incorporated the most successful
features of newer languages. The C language has done likewise in its evolution to C++.

Similarly, the research community provides a continuing source of ideas for the evolution of NFS
with projects like the Andrew File System (AFS), Sprite, Spritely NFS, NQ-NFS, and others. AFS
is a good example, because many features that appeared first in AFS have now migrated to NFS,
including close-to-open file consistency, network-wide name spaces, large block transfers, and
client-side disk caching.

Network Appliance Inc.

7

http://web.mit.edu/kerberos/www/
http://www.sun.com/webnfs/

T E C H N I C A L R E P O R T

As a result of its history of adopting new ideas, we can rely on NFS to remain strong for many
years to come. A scientific programmer once said: "I don't know what programming language I'll
be using in the year 2001, but I'm sure it will be called 'FORTRAN.'" A similar claim might be
made of NFS.

Network Appliance Inc.

8

© 2005 Network Appliance, Inc. All rights reserved. Specifications subject to change without notice. NetApp, NetCache, and the Network Appliance
logo are registered trademarks and Network Appliance, DataFabric, and The evolution of storage are trademarks of Network Appliance, Inc., in the
U.S. and other countries. Oracle is a registered trademark of Oracle Corporation. All other brands or products are trademarks or registered
trademarks of their respective holders and should be treated as such.

	The Evolution of NFS
	
	Dave Hitz & Andy Watson | Network Appliance

